На главную

Статья по теме: Эмпирические постоянные

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Здесь ур — скорость роста дефекта, выражаемая через скорость деформации образца: ир=Ла?. Эксперимент показывает, что между долговечностью ,и скоростью v\ существует простая зависимость: о1 = с/т™ (где А, п, с и т — эмпирические постоянные) . Допуская для жестких полимеров, что U = U0 — а0р, можно получить выражение [74], обобщающее экспоненциальный и степенной законы долговечности:[4, С.133]

Следует указать, что уравнение МРС, так же как и уравнение Трелоара, содержит только одну эмпирическую постоянную, связанную с эластичностью каучука. Известно, что в области средних удлинений зависимость напряжения от деформации лучше описывается так называемым уравнением Муни—Ривлина, содержащим две независимые эмпирические постоянные [5]. Отклонения экспериментальных данных от выводов статистической[8, С.203]

где А, ё?а0 — эмпирические постоянные, зависящие от вида материала. Имеющая размерность энергии постоянная &&0 является энергией активации процесса разрушения и для полимеров близка к энергии активации термической деструкции [16, с. 127]. Величина А, имеющая размерность времени, численно равна 10~12—10~13 с, т. е. варьирует в пределах периода колебаний атомов или молекул, образующих узлы, обычных кристаллических решеток [18, с. 56]. Постоянная Y с размерностью объема чувствительна к изменениям структуры материала (в частности, к изменениям ориентации полимера) и часто называется структурно-чувствительным коэффициентом. Физический смысл постоянных А и -у и их выражение через молекулярные константы дается в флуктуационной теории прочности Бартенева (17], которая будет излагаться немного позже.[2, С.206]

ной линией на рис. 25. Это объясняется тем, что при очень малых временах разрушения время жизни образца становится сравнимым со временем приложения нагрузки (ударные испытания) и зависит от скорости распространения упругих волн. В этой области статическое нагружение s=const осуществить не удается и прочность в значительной степени зависит от скорости нагружения. При ударных испытаниях процесс разрушения приобретает принципиально иной характер и понятие о критическом напряжении ак теряет смысл. Эта проблема выходит за рамки данной монографии. Изложенную теорию временной зависимости прочности. следует рассматривать как весьма приближенную. Так, например, формулы (I. 21)—(I. 23) содержат эмпирические постоянные а, (3, U0 и др. Кроме того, коэффициент концентрации напряжений в вершине трещины, строго говоря, не может считаться постоянной величиной, так как он по мере роста трещины увеличивается, достигает максимального значения, а затем уменьшается1110. Вывод уравнения долговечности с учетом изменения |3 представляет большие трудности. Некоторым оправданием применения в расчетах (3=const может служить то обстоятельство, что основной вклад в долговечность вносит лишь начальный период роста трещины, когда коэффициент |3 сильно измениться не успевает.[3, С.55]

где Ет и s — эмпирические постоянные.[4, С.220]

где bf,, UQ, У* и Ч с — эмпирические постоянные 244[4, С.244]

где а0, аь 60, Ь\, т, U, ц, (5, d, k, q — эмпирические постоянные; R — универсальная газовая постоянная; а — напряжение; Т — температура; с — концентрация жидкой среды; ft — толщина образца; р — плотность; М — молекулярная масса.[4, С.277]

где Je = HGe и Jg = 1/Gg — равновесная податливость и податливость в стеклообразном состоянии; tto, соЛо, cort и & — положительные эмпирические постоянные. Для получения лучшего согласия с экспериментальными данными во всей области перехода из стеклообразного состояния в высокоэластическое необходимо несколько варьировать b при переходе от одной функции к другой. Это различие не должно быть большим, поскольку в средней точке дисперсионной области, т. е. там, где выполняется условие dz\gG(t)/d(\gt)z = 0, наклоны всех зависимостей от времени (или частоты) в двойном логарифмическом масштабе практически одинаковы по абсолютной величине. Согласно соотношениям (1)—-(4) абсолютная величина тангенса угла наклона касательной в точке перегиба равна b при условии, что Gg существенно больше G,.[5, С.46]

где а, Ь и с — эмпирические постоянные; т)° — размерный множитель, равный 1 Па-с.[6, С.134]

' Примечание. Все буквенные обозначения в формулах, кроме т), т и v — эмпирические постоянные,[6, С.176]

где Ge и Gg—равновесный (при больших временах) модуль и модуль в стеклообразном состоянии (при малых временах) соответственно; tho и b — эмпирические постоянные, имеющие положительные значения. Податливость при ползучести /(/), компоненты модуля G'(U)) и податливости .Г(со) могут быть представлены следующими формулами:[5, С.46]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
4. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
5. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
6. Виноградов Г.В. Реология полимеров, 1977, 440 с.
7. Привалко В.П. Справочник по физической химии полимеров том 2, 1984, 330 с.
8. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.

На главную