На главную

Статья по теме: Активации термической

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Суммарную энергию активации термической деструкции полипропилена измеряли многие авторы. Ее величина (61,0 [11], 62,5 [12], 55,0 [6], 51,4 [13], 65,0 ккал/моль [14]} всегда ниже, чем энергия разрыва связи С—С (80 ккал/моль), что свидетельствует о радикально-цепном механизме деструкции.[4, С.127]

Расчеты, проведенные для предельно ориентированных полимеро» достаточно большой молекулярной массы, показали, что значения Uu близки к энергии химической связи между атомами главной цепи макромолекулы и совпадают со значением энергии активации термической ^деструкции соответствующего высокомолекулярного соединения. Следовательно, в этих условиях, когда в максимальной степени проявляется совместное действие межмолекулярных сил и суммарный эффект их превосходит прочность валентных связей, . разрушение образца происходит вследствие разрыва валентных связей макромолекулы**, оно может быть рассмотрено как процесс термической деструкции, локализованной в небольшой части полимерного тела и ускоренной механическими напряжениями (чем больше а, тем меньше U и tA). Другими словами, механическое напряжение «помогает» тепловому движению, которое стремится разорвать связи между атомами. При случайном концентрировании избытка тепловой энергии на определенной связи или при повышенных температурах разрыв происходит без такой «помощи».[6, С.415]

Голдфингер и Лаутербах [113] нашли для суммарной энергии активации термической полимеризации стирола величину 16,0 ккал/молъ. По формуле[11, С.56]

Рис. 263. Зависимость степени измельчения железа от энергии активации термической деструкции полимеров.[7, С.307]

Активные монорадикалы инициируют реакцию полимеризации. Энергия активации термической полимеризации составляет 20—30 ккал/моль.[1, С.92]

Независимость энергии активации от ориентации и совпадение ее величины с энергией активации термической деструкции полимера в вакууме позволяют сделать следующее заключение." Главным в механизме разрушения твердых полимеров является разрыв химических связей независимо от того, находится ли полимер в неориентированном или ориентированном состоянии, причем в элементарном акте разрушения рвется примерно одна химическая связь.[8, С.141]

В этом уравнении UQ — начальный активационный барьер, величина которого обычно соизмерима с энергией активации термической деструкции полимеров; уа — по сути дела представляет собой ту часть работы, которую совершают внешние силы при разрушении твердого тела. Остальная часть работы по разрыву химических связей совершается за счет энергии флуктуации теплового движения атомов.[9, С.293]

При высоких температурах в ненапряженном состоянии происходит термическое разложение полимера с распадом химических связей и образованием низкомолекулярных продуктов. Из предыдущего раздела следует, что энергия активации термической деструкции полимера (диссоциации полимера) UD отождествляется с «нулевой» энергией активации U0 в уравнении долговечности. Обоснования этого были рассмотрены в гл. 2.[10, С.117]

В дальнейшем изучением этой проблемы в более широких пределах температур и для полимеров, находящихся в различных физических состояниях, занимались Барамбойм и Грон. При вибрационном измельчении стеклообразных полимеров (желатина, поливиниловый спирт, поливинилхлорид, полиметилметакри-лат) влияние температуры характеризуется нулевым температурным коэффициентом. Влияние температуры значительно только в том случае, когда она достигает величин, при которых соответствующий полимер испытывает термическую деструкцию и при которых можно говорить в равной мере как о термической активации механического процесса, так и о механической активации термической деструкции.[12, С.40]

Таблица 11.32 Энергии активации термической деструкции полимеров [63][13, С.300]

где А, ё?а0 — эмпирические постоянные, зависящие от вида материала. Имеющая размерность энергии постоянная &&0 является энергией активации процесса разрушения и для полимеров близка к энергии активации термической деструкции [16, с. 127]. Величина А, имеющая размерность времени, численно равна 10~12—10~13 с, т. е. варьирует в пределах периода колебаний атомов или молекул, образующих узлы, обычных кристаллических решеток [18, с. 56]. Постоянная Y с размерностью объема чувствительна к изменениям структуры материала (в частности, к изменениям ориентации полимера) и часто называется структурно-чувствительным коэффициентом. Физический смысл постоянных А и -у и их выражение через молекулярные константы дается в флуктуационной теории прочности Бартенева (17], которая будет излагаться немного позже.[2, С.206]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Амброж И.N. Полипропилен, 1967, 317 с.
5. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
6. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
7. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
8. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
9. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
10. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
11. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
12. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
13. Липатов Ю.С. Справочник по химии полимеров, 1971, 536 с.

На главную