На главную

Статья по теме: Активности мономеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В соответствии с принятым принципом оценки активности мономеров в реакциях радикальной полимеризации активность радикалов, образующихся из этих мономеров, расположится в антибат-ной (строго обратной) последовательности. Иными словами, время жизни радикала тем меньше, чем он активнее, т. е. чем меньше эффект сопряжения неспаренного электрона радикала с электронной структурой заместителя в молекуле мономера. Эта активность может быть определена по значению отношения констант скоростей обрыва и роста цепи: чем больше значение К05р/КР, тем меньше стационарная концентрация радикалов растущих цепей и выше активность радикалов, т. е. ниже активность соответствующих мономеров. Количественно, например, активности радикалов винилаце-тата, метилметакрилата и стирола в реакции роста цепи соотносятся как 20:2: 1.[5, С.30]

Если различие в активности мономеров очень большое, то для получения сополимера с желаемым составом следует непрерывно вводить в реакционную смесь более активный мономер.[1, С.143]

Отличительной особенностью катионной сополимеризации по сравнению с радикальной является сложный характер зависимости активности мономеров от их строения, природы растворителя, катализатора и температуры. Как и в случае любой совместной полимеризации, процесс описывается уравнением (4.1), если отношение констант перекрестного роста цепи knfk2l не более, чем на порядок, отличается от единицы, т.е. активность мономеров или стабильность соответствующих растущих ионов не сильно отличаются друг от друга.[8, С.192]

Наблюдаемые процессы находятся в качественном согласии с поведением карбкатионных центров как жестких, так и мягких кислот. Отмеченное выше увеличение селективности при отборе близких по активности мономеров на координированных со слабым ароматическим основанием ионах карбония соответствует повышению роли фактора мягкости. Напротив, координация сильных оснований (О-, N- и S- содержащие соединения) оказывает противоположный эффект: имеет место увеличение жесткости ионных центров и, как следствие, снижение селективности перекрестного роста цепи при сополимеризации. Подобным образом влияет и температура: уменьшению диссоциации ионных пар с ее повышением соответствует возрастание жесткости полимерных ионов карбония.[8, С.201]

Известно, что при сополимеризации двух мономеров Mi и М2 состав сополимера зависит как от состава исходной мономерной смеси, так и от соотношения активностей мономеров и их радикалов [8]. Относительные активности мономеров выражаются через отношения констант скоростей присоединения к «своим» и «чужим» радикалам[4, С.11]

Кинетика ионной сополимеризации изучена мало. Основные литературные сведения относятся к изучению состава сополимеров, определению констант сополимеризации и относительной реакционной способности моиомероЕ! в реакциях с ионом карбония и карбанионом. Примерные ряды активности мономеров в процессах ионной сополимеризации приведены ниже.[3, С.153]

Различие механизмов радикальной, ионной и анионной полимеризации отчетливо проявляется в составе сополимеров, полученных из одной и той же пары мономеров. Значения г\ и г2 (а следовательно, QVL ё) изменяются при изменении механизма реакции. Ниже приводятся примерные ряды активности мономеров при ионной сополимеризации:[2, С.258]

При большой разности в активностях мономеров скорости инициирования и обрыва будут влиять на отношение концентраций растущих цепей С]+/С2+ и, в свою очередь, на состав сополимера. При использовании обычного уравнения состава сополимера в этом случае получаются, очевидно, ошибочные значения констант относительной активности мономеров.[8, С.193]

Таким образом, метод Келена - Тюдеша позволяет оценить пригодность обычной двухпараметрической модели сополимеризации и корректность определения констант, а также служит для уточнения их значений. Рассмотрение ряда бинарных систем на примере изобутилен - стирол, изобутилен -алкилвиниловый эфир в присутствии различных катализаторов показало, что в большинстве случаев опубликованные значения констант сополимеризации действительно приведены с большими ошибками или вообще не имеют смысла. Учитывая трудности применения уравнения сополимеризации к катионным системам, правильнее рассматривать относительные активности мономеров или параметры сополимеризации мономеров как «индексы относительной реакционной способности» (для ряда типовых реакций) и для их оценки использовать нелинейные математические метод оы [27].[8, С.195]

Относитечьные активности мономеров[9, С.75]

Относительные активности мономеров при тройной сополимеризации на каталитической системе (АсАс), У^ДИБАХ[9, С.81]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
5. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
6. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
7. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
8. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
9. Сеидов Н.М. Новые синтетические каучуки на основе этилена и альфа-олефинов, 1981, 192 с.
10. Сидельховская Ф.П. Химия N-винилпирролидона и его полимеров, 1970, 151 с.
11. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
12. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
13. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
14. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
15. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
16. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
17. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
18. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную