На главную

Статья по теме: Формирования адгезионного

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В процессе формирования адгезионного шва в равной мере вероятны как диффузия частей макромолекулы размягченного ад-гезива в субстрат, так и затекание адгезива в микродефекты, находящиеся на поверхности субстрата. Непосредственная связь между глубиной затекания адгезива в микродефекты силикатного стекла и адгезией была установлена экспериментально [390, с. 203]. После окончания формирования адгезионного шва его прочность зависит от режима расслаивания: скорости расслаивания, температуры расслаивания и условий деформации, определяющих концентрацию напряжений на поверхности, разделяющей адгезив и субстрат.[2, С.135]

Если в процессе формирования адгезионного шва повышение температуры контакта Тк, увеличение времени контакта tK и давления Р способствуют увеличению адгезии, то при его разрушении повышение температуры расслаивания Тр, увеличение времени действия деформирующей силы tp (или уменьшение скорости расслаивания v) будут сопровождаться уменьшением расслаивающего усилия. Последнее понятно, если распространить пред-[2, С.132]

Если представить себе упрощенную модель формирования адгезионного шва в виде тела, погруженного в высоковязкую жидкость, то напряжение, необходимое для извлечения тела из жидкости, пропорционально глубине погружения тяжа, т. е. деформации вязкого течения. Если тяжи не извлекаются, а разрушаются, то коэффициент /d отражает число образующихся (вследствие заполнения микропор) тяжей полимера и пропорционален деформации вязкого течения (если тяжи имеют цилиндрическую[2, С.133]

По мере того как будет реализовываться способность полимера заполнять микродефекты, роль факторов, влияющих на адгезию в процессе формирования адгезионного шва, будет уменьшаться. Наступит момент, когда увеличение Тк, Р и tK не будет сопровождаться ростом (Тр. При развитии обратимой деформации такое «насыщение» логически вытекает из стремления высокоэластической деформации еэл развиться до равновесного значения. При деформации только вязкого течения пределом упрочнения адгезионного шва является максимальное заполнение микродефектов. Таким образом, уравнение (11.27) справедливо только в определенном интервале ТК1 Р, tK. В дальнейшем в результате заполнения микродефектов противодействие субстрата внешнему давлению приводит к уменьшению силы, вызывающей течение. Таким образом, на последней стадии давление Р становится убывающей функцией времени Рк = / (tK), что и обусловливает стремление адгезионной прочности со временем к предельному значению. При адгезии полиэтилена к целлофану (когда расплав полиэтилена наносится на целлофан, не размягчающийся при температуре контакта) затекание полиэтилена в микродефекты целлофана обусловливает увеличение числа контактов активных групп полиэтилена с активными группами целлофана. Развитие реологических процессов происходит во времени и интенсифицируется с повышением температуры и давления контакта. По мере заполнения микродефектов процесс затекания замедляется и затем прекращается. Повышение давления должно сопровождаться увеличением числа контактов по мере затекания до известного предела. При большом давлении наблюдается так называемое механическое стеклование адгезива, затрудняющее развитие реологических процессов.[2, С.134]

В последнее время опубликован ряд работ [22, 50, 51], в которых подвергнуты критике существующие теории адгезии и в качестве наиболее общей теории предложена реологическая теория адгезии, или теория механической деформации адгезионных соединений. Такая теория могла бы быть полезна, если бы она дала возможность понять причины существования адгезии на границе раздела фаз. Однако эта теория вообще не дает ответа на вопросе причине адгезии между двумя твердыми телами или твердым телом и жидкостью и может рассматриваться не как теория адгезии, а, скорее, как теория адгезионных соединений. Действительно, согласно Шарпу [51], прочность адгезионной связи не определяется межфазными силами, так как чисто адгезионное разрушение встречается очень редко. Вряд ли такое положение может быть приемлемым. Мы считаем [52], что прежде всего необходимо четкое разделение двух понятий — адгезии и адгезионной прочности. Существует понятие адгезии как физического явления [12, 13] и определение адгезии как термодинамической величины. Одновременно существует и другое понятие — «адгезионная прочность» соединения, относящееся к области разрушения твердых тел. Адгезионная прочность является кинетической величиной, зависящей от скорости расслаивания, а не равновесной характеристикой. Хорошо известно, что теоретическая прочность твердых тел не соответствует их реальной механической прочности. Теоретическая прочность определяется молекулярными силами, в то время как реальная прочность зависит от дефектов структуры и других факторов. Процесс деформации твердых тел является неравновесным и связан с диссипацией энергии. Несоответствие между термодинамически вычисленной работой адгезии и определенной экспериментально адгезионной прочностью является результатом того, что при разрушении адгезионного соединения его прочность определяется в неравновесных условиях. Поэтому можно ожидать, что между понятиями «адгезия» и «адгезионная прочность» соответствие будет существовать только в том случае, когда последняя определяется в термодинамически равновесных условиях разрушения идеальной структуры, т. е. при деформации с бесконечно малой скоростью. Таким образом, при постоянстве термодинамической работы адгезии (величины, определяемой только природой взаимодействующих поверхностей) работа разрушения адгезионного соединения может изменяться в зависимости от многих факторов. Поэтому термодинамическая работа адгезии, если она правильно определена (см. выше), является единственной величиной, характеризующей адгезию и имеющей физический смысл независимо от условий испытания или условий формирования адгезионного соединения, приводящих к тем или иным дефектам.[3, С.15]

В процессе формирования адгезионного контакта в соединяемых материалах возникают напряжения, вызванные усадкой слоя адгезива, различием в коэффициентах термического расширения и некоторыми другими причинами. В системах полимер — суб-^1 страт для снижения остаточных напряжений в полимер вводят наполнители, изменяют режим формирования слоя адгезива, облегчают протекание процессов релаксации напряжений при помощи пластификаторов.[4, С.10]

Многие вопросы формирования адгезионного контакта рассмотрены в гл. III. Можно эффективно влиять на адгезионную прочность и долговечность адгезионных соединений, воздействуя на внутренние напряжения. Как следует из материала, приведенного в гл. IV, значение внутренних напряжений зависит от рецептуры адгезива — типа и дозировки наполнителя, мягчителя, отвердителя, растворителя. Обработка наполнителей с помощью ПАВ — один из методов понижения внутренних напряжений; другой эффективный метод — применение структурных пластификаторов.[4, С.381]

Закономерности процесса формирования адгезионного контакта исследовали для системы эластомер — пористое тело (ткань) [129]. Было обнаружено, что глубина затекания адгезива в субстрат зависит от давления и продолжительности формирования образцов. Адгезионная прочность оказалась пропорциональной глубине затекания и, по мнению авторов [129], она зависит в основном от микрореологических процессов.[4, С.125]

Зависимость адгезионной прочности в системе металл—реакто-пласт от температуры формирования адгезионного контакта оказывается еще более сложной, чем в системе металл — термопласт. В данном случае изменяются условия отверждения клеевого слоя, глубина отверждения и другие факторы [57—60],[4, С.300]

Прочность адгезионного соединения зависит не только от взаимодействия молекул на границе фаз, но и от ряда других факторов (условия формирования адгезионного соединения, продолжительность контакта поверхностей, скорость приложения нагрузки и т. д.); существенное значение имеют механические свойства соединенных материалов, которые могут отличаться от соответствующих показателей тех же материалов, взятых в отдельности, вследствие изменения их структуры под влиянием силового поля твердой поверхности [53] —эффект дальнодействия.[1, С.470]

Как следует из приведенных выше данных, межмолекулярные силы в принципе могут обеспечить достаточно прочную связь адгезива с субстратом. Однако уже на стадии формирования адгезионного соединения возникают разнообразные дефекты — потенциальные очаги будущего разрушения. Ими могут быть различные загрязнения, оставшиеся на поверхности субстрата, незаполненные адгезивом углубления, воздушные включения, продукты, выделившиеся в процессе склеивания и скопившиеся на границе раздела, поры, оставшиеся после улетучивания растворителя, трещины, возникшие в процессе усадки. Вообще имеется много факторов, ослабляющих адгезионное соединение; более подробно это будет рассмотрено в последующих главах.[4, С.28]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
2. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
3. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
4. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.

На главную