На главную

Статья по теме: Обусловливает возможность

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Наличие в системе водной фазы обусловливает возможность протекания нежелательных побочных реакций, к-рые могут существенно влиять на состав образующихся сополимеров. Так, при межфазной интерби-поликонденсации хлорангидридов адипиновой и 4,6-дибромизофталевой к-т с гексаметилендиамином вследствие большой склонности к гидролизу хлорангидрида алифатич. к-ты получают сополимер, в к-ром содержание 4,6-дибромизофталевой к-ты больше, чем в исходной смеси.[19, С.222]

Наличие в системе водной фазы обусловливает возможность протекания нежелательных побочных реакций, к-рые могут существенно влиять на состав образующихся сополимеров. Так, при межфазной интербиполиконденсации хлорангидридов адипиновой и 4,6-дибромизофталевой к-т с гексаметилендиамином вследствие большой склонности к гидролизу хлорангидрида алифатич. к-ты получают сополимер, в к-ром содержание 4,6-дибромизофталевой к-ты больше, чем в исходной смеси.[23, С.222]

Специфика растворной полимеризации обусловливает возможность получения полимеров, содержащих некоторое количество микроблоков полистирола. Проведенные исследования [43, 44] показали, что наличие в сополимере значительных количеств микроблоков полистирола приводит к заметному ухудшению свойств резин, связанному, по-видимому, с появлением дефектов в структуре вулканизационной сетки; так, с увеличением содержания микроблоков полистирола наблюдается значительное понижение напряжения при удлинении, сопротивления разрыву, эластичности и сопротивления истиранию, повышение теплообразования и остаточной деформации (рис. 5).[1, С.278]

Резкая анизотропия формы макромолекул обусловливает возможность существования полимеров в ориентированном состоянии. Ориентация в большинстве случаев достигается путем растяжения полимерных тел.[4, С.178]

Комплекс ценных физико-механических свойств полиформальдегида обусловливает возможность применения его во многих областях техники. Из полиформальдегида изготавливают вкладыши и втулки подшипников скольжения, кольца подшипников качения, бесшумные шестерни, зубчатые ролики, корпуса и детали насосов, вентили для соединения труб, шпульки и катушки в текстильной промышленности и др. Окрашенный полиформальдегид может, быть использован для изготовления предметов широкого потребления — корпусов электробритв и фотоаппаратов, частей пылесосов, оправы для очков, расчесок, мыльниц, вешалок и др. Волокно из полиформальдегида имеет высокую прочность и водостойкость.[2, С.51]

Формальдегид является реакционноспособным мономером, он способен подвергаться атаке как электрофильными, так и нуклеофильными агентами. Это обусловливает возможность применения большого количества катализаторов ионной природы для полимеризации формальдегида. Выбор катализатора зависит от заданных свойств полимера. Анионные катализаторы позволяют получать продукт с высоким молекулярым весом и широким мо-лекулярно-весовым распределением, так как они менее чувствительны к полярным примесям. Но в промышленности применяют и катионные катализаторы, поскольку практическое значение имеет полиформальдегид со сравнительно небольшим молекулярным весом.[2, С.48]

Полимеры, имеющие значения логарифмической приведенной вязкости, близкие к величинам, приводимым в таблице, должны обладать хорошими прочностными характеристиками, что обусловливает возможность их применения для изготовления различных изделий.[5, С.49]

Под термином «жидкие каучуки» обычно понимают относительно низкомолекулярные линейные полимеры (молекулярная масса 500—10000), имеющих консистенцию более или менее вязких жидкостей. Последнее обусловливает возможность их переработки методами свободного литья или литья под небольшим давлением.[1, С.411]

В отличие от низкомолекулярных соединений полимеры существуют только в конденсированных агрегатных состояниях: жидком и твердом. Однако фундаментальное свойство высокомолекулярных соединений - гибкость макромолекул - обусловливает возможность реализации различных способов взаимной упаковки полимерных цепей и, следовательно, разнообразие фазовых состояний.[3, С.122]

Полипептиды, являющиеся стереорегулярными сополимерами, способны, аналогично другим гетероцепным полимерам, как к реакциям деполимеризации (гидролитической деструкции), так и к разнообразным полимераналогичным превращениям. Специфичность строения макромолекул белков обусловливает возможность протекания сопряженных процессов деструкции цепей и полимераналогичных превращений. Кинетика химических реакций в белках определяется не только реакционной способностью тех или иных функциональных групп, но и всеми структурными уровнями полимерного субстрата.[3, С.357]

Ионпо-координациопной полимеризацией называют ката штичс-ский процесс образования макромолекул, в котором стадии разрыва связи в мономере предшествует возникновение координационного комплекса между мим и активным центром. Характер и структура комплекса зависят от типа катализатора ь строения мономера Комплоксообразование мономер — катализатор обусловливает возможность синтеза стереорегулярных полимеров из широкого круга мономеров (а-олефиков, диенов, ряда полярных мономеров и др.) Катализаторы, вы ывающие стереорегулироваиие в процессе присоединения мономерных звеньев, называют стсреоспецифическнмн. В качество катализаторов наибольшее распространение получили комгпексныс соединения трех типов соединения Циглера — Натга (открытые в 1954 г. и названные по имени их открывателей), образующиеся при взаимодействии органических производных металлов I—III групп Периодической системы с солями (обычно хлори дами) переходных металлов IV—VIII групп, и-аллильные комплексы переходных металлов; оксидно-металлические катализаторы Варьируя состав н способ получения катализаторов можно регулировать их каталитическую активность и стереос пецифичность действия, т. е способность «отбирать» при полимеризации мономерные звенья определенной конфигурации и ориентировать и,х при подходе к активному центру Состав эти\ катализаторов сложен. Из катализаторов Ципера—Натта в производстве обычно используют комплексы На основе алюми-ниналкилов и производных титана н ванадия. Наибольшее значение эти катализаторы имеют при полимеризации неполярных олефинов (этилен, пропилен) и диенов (бутадиен, изопрен). Например, полиэтилен с высокой стрпенью кристалличности этим методом может быть получен при низком давлении[6, С.138]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кузнецов Е.В. Альбом технологических схем производства полимеров и пластических масс на их основе, 1976, 108 с.
3. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
4. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
5. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
8. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
9. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
10. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
11. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
12. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
13. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
14. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
15. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
16. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
17. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
18. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
19. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
20. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
21. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
22. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
23. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
24. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
25. Чегодаев Д.Д. Фторопласты, , 196 с.

На главную