На главную

Статья по теме: Полимеризация протекает

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Блочная полимеризация протекает в среде поли-меризующегося мономера. Этим методом получают полимеры наиболее прозрачные и с хорошими диэлектрическими свойствами. Однако при полимеризации в блоке затрудняется регулирование температуры реакционной среды и своевременный отвод реакцион-[5, С.90]

При п = 3 полимеризация протекает с выделением теплоты вследствие заметной напряженности цикла в гексаорганоцикло-трисилоксанах, значение которой для Дз составляет 10,5 кДж/моль и возрастает при замещении метальных групп стерически емкими и, особенно, полярными группами [39]. Циклические тримеры с такими группами (например, Ф3, А3) можно с количественным выходом превратить в полимеры, подобрав условия (катализатор и температуру), при которых силоксановые связи в циклах расщепляются, а в полимере — нет, т. е. реакция (12) становится необратимой [33, 40]. Полученные неравновесной полимеризацией цикло-трисилоксанов термодинамически неустойчивые силоксановые кау-чуки являются в отсутствие катализаторов вполне устойчивыми в реальных условиях эксплуатации вплоть до 250—350°С.[1, С.473]

Ступенчатая полимеризация протекает в присутствии гидролитических агентов (воды, кислот, оснований) и поэтому часто называется гидролитической. Вещества, способствующие такому процессу, называются активаторами. Наибольшее значение имеет полимеризация циклов, отличающаяся тем, что в полимере не возникает химических связей иной природы, чем имеющиеся в исходном цикле, а изменяется лишь порядок расположения этих связей в синтезируемой макромолекуле.[4, С.260]

Поэтому быстрая полимеризация протекает одновременно на разделенных ионных парах и, с еще большей (в 100 раз) скоростью, на свободных анионах [10]. В полярном растворителе, например ацетоне, равновесие (33) смещается вправо и очень быстрая нолимеризация протекает в основном на свободных анионах [5].[1, С.480]

Катионная, или карбониевая, полимеризация протекает с образованием иона карбония - полярного соединения с трехвалентным атомом углерода, несущим положительный заряд. Катализаторами служат вещества, активные в реакциях Фриделя -Крафтса. Катализатор является акцептором, а полимеризую-щийся мономер - донором электронов:[4, С.254]

Несмотря на установленные общие закономерности ионно-координационной полимеризации 1,3-диенов подбор катализаторов носит часто эмпирический характер. Это обусловлено, в первую очередь, отсутствием четких сведений о механизме реакций, лежащих в основе процессов стереорегулирования. Общепринято, что ионно-координационная полимеризация протекает через стадии координации мономера на активном центре и его внедрения по связи металл — углерод.[1, С.105]

Полимеризация индивидуальных циклосилоксанов или их смесей в промышленности осуществляется под влиянием катализатора на основе сульфата алюминия и серной кислоты. Катализатор готовится в виде пасты, получаемой при смешении силоксанового масла, обезвоженного сульфата алюминия и серной кислоты в массовом соотношении 10 : 5 : 0,2 *. Можно применять и щелочные катализаторы. Полимеризация протекает по следующей схеме: СН3 СН3 I ! •[2, С.208]

Медведев с сотрудниками обратили внимание на изменение скорости полимеризации и числа полимер-мономерных частиц в зависимости от конверсии мономеров и отметили, что теория Смита — Эварта не учитывает влияния адсорбционных слоев эмульгатора на скорость протекания элементарных реакций полимеризации. Количество частиц с конверсией мономеров резко уменьшается, средний диаметр их пропорционален степени конверсии, в то время как общая поверхность частиц остается постоянной. По теории Медведева скорость полимеризации обусловлена большой скоростью образования свободных радикалов инициатора и снижением энергии активации распада инициатора полимеризации в слоях эмульгатора на поверхности раздела фаз. При изучении кинетики полимеризации показано, что скорость полимеризации линейно зависит от суммарной поверхности всех полимер-мономерных частиц. Это позволяет считать, что полимеризация протекает в адсорбционных слоях эмульгатора, в которых концентрация мономера и инициатора является наибольшей. Адсорбционные слои эмульгатора определяют не только устойчивость системы, но и скорость образования радикалов и место протекания полимеризации,[1, С.149]

Кзтионная полимеризация протекает под влиянием сильных кислот и катализаторов Фриделя—Крафтса**. Катализаторы являются сильными акцепторами электронов. По убывающей[5, С.134]

Анионная, или карбанионная, полимеризация протекает с образованием карбаниона - соединения с трехвалентным атомом углерода, несущим отрицательный заряд. Анионная полимеризация протекает в присутствии доноров электронов - катализаторов второго класса:[4, С.254]

Полимеризатор // представляет собой цилиндрический аппарат с рубашкой, снабженный пропеллерной мешалкой и холодильником 10. Полимеризация протекает при температуре 40—50°С.[3, С.49]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кирпичников П.А. Альбом технологических схем основных производств промышленности синтетического каучука, 1986, 225 с.
3. Кузнецов Е.В. Альбом технологических схем производства полимеров и пластических масс на их основе, 1976, 108 с.
4. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
5. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
6. Труды Л.Х. Мономеры. Химия и технология СК, 1964, 268 с.
7. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
8. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
9. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
10. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
11. Зильберман Е.Н. Примеры и задачи по химии высокомеолекулярных соединений, 1984, 224 с.
12. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
13. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
14. Амброж И.N. Полипропилен, 1967, 317 с.
15. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
16. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
17. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
18. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
19. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
20. Башкатов Т.В. Технология синтетических каучуков, 1987, 359 с.
21. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
22. Блаут Е.N. Мономеры, 1951, 241 с.
23. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
24. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
25. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
26. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
27. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
28. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
29. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
30. Сидельховская Ф.П. Химия N-винилпирролидона и его полимеров, 1970, 151 с.
31. Пашин Ю.А. Фторопласты, 1978, 233 с.
32. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
33. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
34. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
35. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
36. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
37. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
38. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
39. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
40. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
41. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
42. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
43. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
44. Бажант В.N. Силивоны, 1950, 710 с.
45. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
46. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
47. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
48. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
49. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
50. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
51. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
52. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
53. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
54. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
55. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.

На главную