На главную

Статья по теме: Поверхности наполнителя

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Рассмотрим вначале изменение поверхности наполнителя в поксидных пластиках под действием воды и ее паров. В боль-1ей степени изучена поверхность стеклянных волокон, на кото-ых мы и остановимся подробнее. Помимо гидроксилышх групп азной кислотности и координационно-ненасыщенных центров а поверхности стеклянных волокон находятся группы Si—О—Na другие группы, содержащие катионы металлов [10], которые[3, С.219]

Кроме изменения свойств полимера и его молекулярной структуры у поверхности наполнителя в эпоксидных пластиках обычно наблюдается также повышенная концентрация макродефектов в виде пор и трещин [41—45]. Появление этих дефектов обусловлено неполнотой смачивания поверхности наполнителя полимером, концентрацией внутренних напряжений и более легким зарождением газовых пузырьков на границе раздела. Граничный слой в большей степени подвержен влиянию различных загрязнений, находящихся на поверхности раздела. Следует отметить, что эти эффекты для эпоксидных полимеров проявляются в меньшей степени, чем для других термореактивных полимеров.[3, С.90]

Разделение наполнителей на «усиливающие» и «неусиливающие» связано со смачиваемостью поверхности наполнителя каучуковой фазой. Если смачивания поверхности наполнителя не происходит, то на самых 'начальных стадиях деформации эластомера наблюдается отделение каучуковой фазы от поверхности наполнителя с образованием вакуолей и их рост по мере увеличения деформации, что в свою очередь, приводит к снижению жесткости и прочности наполненного эластомера. Совершенно очевидно, что с уменьшением смачиваемости поверхности наполнителя каучуком эффект усиления должен исчезать и системы по свойствам должны приближаться к губчатым или вспененным эластомерам.[7, С.130]

Ригби [70], рассматривая модуль Данненберга применительно к кинетике скольжения цепей по поверхности наполнителя, провел расчеты, которые показали, что растяжение наполненных эластом'еров вызывает существенное улучшение распределения цепей по длинам. Представления Данненберга хорошо увязываются также с гистерезисными свойствами наполненных резин. Действительно скольжение цепей по поверхности наполнителя должно сопровождаться потерями энергии в материале. Процесс скольжения, очевидно, может развиваться лишь в определенном интервале скоростей деформации. На это обстоятельство, по-видимому, могут указывать опыты Журкова, Сапфировой и Томашевского [71], которыми было показано, что при больших скоростях деформации наполненных резин эффект усиления не проявляется.[7, С.144]

Бол).ши перспективы и мое т метод полимеризаиионного ла полнения, при котором н ио.м сними полимер получают в про цессе синтеза из мономеров и поверхности наполнителя При этом имеющиеся на поверхнопн частиц наполнителя функционал ные группы превращаются п -активные центры полимеризации и каждая частица исполнителя юкрывастся слоем полимера нужной толщины Способ лолимеризацнонного наполнения позволяет получить сыпучие юмогенные композиции заданного состава, легко персраоатывлсмыс в изделия.[2, С.428]

На формирование сетки электропроводящего наполнителя оказывает влияние и взаимодействие полимера с наполнителем. Проводящая цепная структура наполнителя образуется лишь в том случае, когда энергия взаимодействия частиц наполнителя с полимером превышает энергию взаимодействия полимер — полимер, но при условии, что на поверхности наполнителя есть участки, по которым осуществляется контакт, и энергия взаимодействия наполнитель наполнитель выше энергии взаимо действия наполните 1Ь — полимер[2, С.387]

Особенно большая сорбция воды наблюдается в тех случаях, когда в состав наполнителя (хотя бы в небольших количествах) входят растворимые в воде или легко гидролизующиеся соединения (например, оксиды щелочных или щелочно-земельных металлов). В таких случаях поглощение воды сильно возрастает в результате образования на поверхности наполнителя слоя водного раствора, что обусловливает значения сорбции, соответствующие десяткам и сотням мономолекулярных слоев.[3, С.86]

При разрыве системы по поверхности раздела каучук-наполнитель, равной 1 см2, необходимо преодолеть силы связи между каучуком и наполнителем и затратить энергию на создание новой поверхности раздела каучук-воздух. При этом затрачивается энергия, равная: ф = (ан_в — ан_к) + <тк_в = w + ак_в. Если эту энергию умножить на величину поверхности наполнителя, то получим энергию, необходимую на преодоление сил адгезии каучука к поверхности 1 г наполнителя. Эта энергия равна:[1, С.171]

В наполненной системе образовавшиеся связи полимер на полнитель при деформации разрушаются и ВНОЕЗЬ восстанавливаются в новом положении, в результате чего происходит выравнивание местных перенапряжений, т. е. усиление полимера. Дополнительный вклад в упрочнение вносит повышенный механический гистерезис, обусловленный снижением подвижности макромолекул у поверхности наполнителя и разрушением связей полимер—наполнитель и наполнитель — наполнитель. Вследствие повышенного гистерезиса степень релаксации напря[2, С.427]

Для создания композиционных материалов необходимо наличие прочной термически и гидролитически устойчивой связи между поверхностью наполнителя и полимерной матрицей, обеспечивающей их совместную работу. Для обеспечения хорошей адгезии между эпоксидным полимером и неорганическим наполнителем необходимо образование прочной негидролизуемой химической связи, т. е. на поверхности наполнителя должны быть, группы, способные к химическому взаимодействию с функциональными группами эпоксидных связующих.[3, С.85]

Данные этих и многих других работ, несмотря на большой разброс, а в некоторых случаях и противоречивые результаты, позволяют сделать заключение, что при наполнении происходит уменьшение плотности полимера и разрыхление его структуры, которое сопровождается повышением температуры стеклования и уменьшением подвижности цепей. Эти наблюдения находятся в противоречии с данными о повышении температуры стеклования полимеров при увеличении плотности полимера под действием гидростатического давления [63] и в настоящее время трудно объяснимы. Если бы происходило ограничение подвижности молекул около поверхности наполнителя, которое не может распространяться равномерно на всю массу полимера, следовало бы ожидать появления двух температур стеклования, как это характерно для двухфазных систем, или, по крайней мере, значительного расширения области стеклования. Однако этого обычно не наблюдается.[3, С.88]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Белозеров Н.В. Технология резины, 1967, 660 с.
2. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
3. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
4. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
5. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
6. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
7. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
8. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
9. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
10. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
11. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
12. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
13. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
14. Красновский В.Н. Химия и технология переработки эластомеров, 1989, 140 с.
15. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
16. Бажант В.N. Силивоны, 1950, 710 с.
17. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
18. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
19. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
20. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.

На главную