На главную

Статья по теме: Размягченном состоянии

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Заметим, что самоудлинение может происходить только в размягченном состоянии полимера. Из этого следует один, на первый взгляд, парадоксальный эффект, характерный только для полужесткоцепных полимеров. Если жесткость их недостаточна для подавления а-перехода, но уже достаточна для подавления кооперативных конформационных изменений соседних цепей ниже (аналога) 7СТ, то фазовый переход типа самоудлинения оказывается индикатором а-перехода, который другими способами обнаружить практически невозможно. К этому[2, С.390]

Увеличение содержания звеньев винилацетата приводит к снижению температуры размягчения сополимера, придает ему большую текучесть в размягченном состоянии, увеличивает упругость в области температур, лежащих ниже температуры стеклования сополимера, и облегчает растворимость его в слабополярных растворителях. Практически применяемые сополимеры содержат около 15% звеньев винилацетата.[1, С.516]

Полиметилметакрилат имеет ряд недостатков; низкую поверхностную твердость, низкую температуру стеклования (около 115°), малую текучесть в размягченном состоянии. Эти недостатки можно устранить совместной полимеризацией метилметакрилата с некоторыми ненасыщенными соединениями. Метилметакрилат легко образует сополимеры с многими винильными мономерами, поэтому свойства полимера можно модифицировать, изменяя соотношение звеньев различных мономеров в макромолекулах сополимера. Совместная полимеризация метилметакрилата с полярными мономерами позволяет получить сополимер с большей поверхностной твердостью к более высокой температурой стеклования, чем для полиметилмет-акрплата. Органические стекла с повышенной абразишстойкостью и теплостойкостью получаются совместной полимеризацией метилметакрилата с метил-а-хлоракрилатом, метакриловой кислотой, акрилонитрилом. С повышением содержания полярного компонента в сополимере увеличивается его твердость и теплостойкость, но одновременно с этим уменьшается упругость при низкой температуре и текучесть в размягченном состоянии. Соли метакриловой кислоты окрашены в цвет, характерный для данного солеобразу-ющего катиона. Поэтому применение солей метакриловой кислоты в качестве компонентов при совместной полимеризации с мет-акрилатом дает возможность получать светостойкие окрашенные стекла.[1, С.523]

Изучение фракционного состава позволяет судить о механических свойствах полимера. Полимеры, содержащие большое количество низкомолекулярных фракций, имеют более низкую температуру размягчения, высокую пластичность в размягченном состоянии, обладают хладотекучестью в твердом состоянии, повышенной упругостью и морозостойкостью, т. е. ведут себя как пластифицированные полимерные вещества. Полимеры, в которых превалируют фракции высокого молекулярного веса, обладают высокой прочностью, твердостью или эластичностью, переходят в размягченное состояние при более высокой температуре и не столь пластичны, как полимеры, в большей степени пластифицированные низкомолекулярными фракциями.[1, С.75]

Сополимеры, содержащие менее 70% хлористого винилидена, аморфны, при содержании его более 70%—кристалличны. Степень кристалличности постепенно возрастает по мере увеличения количества звеньев хлористого винилидена в макромолекулах сополимера. Минимальная температура перехода сополимера в эластическое состояние и наибольшая текучесть в размягченном состоянии соответствуют содержанию 40—60% звеньев хлористого винилидена в сополимере. Па рис. 135 приведены результаты измерения температурыразмягчения (по Вика) сополимеров хлористого винилидена и хлористого винила различного состава. Минимальную температуру размягчения (23°) имеет сополимер, содержащий 60% звеньев хлористого винилидена. С понижением их содержания линейно возрастает[1, С.518]

С увеличением количества растворителя в полимерной фазе силы взаимодействия между макромолекулами постепенно уменьшаются, что способствует возрастанию упругости или эластичности полимера и сохранению этих свойств при низкой температуре, т. е. улучшению морозостойкости. Набухший полимер имеет более низкую температуру размягчения и более пластичен в размягченном состоянии. Такое влияние растворителя часто используют для модифицирования свойств полимера (пластификация). Растворив небольшое количество растворителя в полимере, повышают его упругость или эластичность, облегчая таким образом формуемость полимера. Чтобы достигнутое модифицирование свойств полимер сохранял более длительное время, требуется растворитель с высокой температурой кипения и незначительной летучестью паров (пластификатор).[1, С.64]

Полимеризация этилена может быть проведена под влиянием Y-облучения*. При дозе облучения 36 мегарентген степень превращения этилена в полимер достигает 12,5% уже при. давлении 84 am. Одновременно с процессом полимеризации под влиянием f-облучения происходит частичная деструкция образовавшегося полимера с последующим соединением продуктов деструкции в новые макромолекулы преимущественно сетчатой формы. Такой полиэтилен размягчается при более высокой температуре, чем полиэтилен высокого давления, имеет меньшую текучесть в размягченном состоянии и не растворяется даже при нагревании. При более высоких давлениях (100 am и выше) и обычной температуре, а также при значительно меньших дозах облучения (4,5 мегарентген) можно получить твердый полиэтилен с удовлетворительными механическими свойствами. С понижением температуры полимеризации возрастает плотность полиэтилена (до 0,95 г/см3) и степень его кристалличности.[1, С.195]

При полимеризации метилметакрилата со стиролом получают сополимеры с повышенной текучестью в размягченном состоянии, что облегчает формование изделий сложной конфигурации.[1, С.523]

В последнее время проводятся исследования" по формованию полиакрилонитрильных нитей из полимера, находящегося в размягченном состоянии.[4, С.402]

По сравнению с нолиметидметакрилатом эти сополимеры обладают более высокими твердостью, прочностью, текучестью в размягченном состоянии. Они устойчивы к действию бензола, толуола, ксилола, бутилацетата, моторного топлива и др., атмосферостойки. Эти сополимеры менее стойки к действию S02, H2S, окислов азота и щелочей, чем полиметилметакрилат. Сополимеры А. с метилмотакрплатом хорошо окрашиваются. Благодаря высокой прочности при растяжении и изгибе в широком интервале темп-р их можно перерабатывать методами горячего вакуум- или пневмоформования.[5, С.24]

По сравнению с полиметилметакрилатом эти сополимеры обладают более высокими твердостью, прочностью, текучестью в размягченном состоянии. Они устойчивы к действию бензола, толуола, ксилола, бути л ацетата, моторного топлива и др., атмосферостойки. Эти сополимеры менее стойки к действию SO2, H2S, окислов азота и щелочей, чем полиметилметакрилат. Сополимеры А. с метилметакрилатом хорошо окрашиваются. Благодаря высокой прочности при растяжении и изгибе в широком интервале темп-р их можно перерабатывать методами горячего вакуум- или пневмоформования.[6, С.21]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Бартенев Г.М. Физика полимеров, 1990, 433 с.
3. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
4. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
5. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
6. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
7. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
8. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.
9. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.

На главную