На главную

Статья по теме: Результате наложения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В результате наложения механического силового поля сферолиты разрушаются с образованием волокнистых структур, ориентированных вдоль направлений растяжения (рис. 1,6). Длина их различна и иногда достигает значений ~100[j. при среднем размере сферолитов 30—40|д,. При этом четкая граница раздела между сферолитами исчезает. Если сферолиты расположены в один ряд (рис. 1, в и г) в направлении, перпендикулярном к действию механического силового поля, и близко примыкают друг к другу, то они могут разрушаться одновременно, практически сохраняя свое линейное расположение в процессе деформации. Сферолиты, расположенные в иных направлениях по отношению действия механического силового поля, разрушаются иначе (рис. 1, б и д, рис. 2, бив).[6, С.404]

В случае, когда несколько слоев толщиной dX размещаются один над другим в результате наложения разнонаправленных потоков лучей, получаются довольно сложные дифференциальные уравнения, решение которых для особо важных специальных случаев приводится ниже. При этом вводятся следующие обозначения:[4, С.28]

Важнейшая физическая характеристика любой молекулы — спектр ее энергетического состояния, который определяется процессами: движением электронов (особенно валентных), колебаниями атомных ядер и вращениями атомных групп около положений равновесия, поступательными и вращательными движениями молекулы как целого. Движения электронов в молекуле определяют ее электронный спектр, который проявляется в ультрафиолетовой и видимой областях шкалы электромагнитных волн (Я=150—1000 нм); колебания атомных ядер и вращения атомных групп определяют колебательный и вращательный спектры атомов. В результате наложения внутримолекулярных процессов молекулярные спектры, наблюдаемые в широком диапазоне энергий, оказываются значительно сложнее атомных спектров. Вследствие большого различия в энергиях электронного, колебательного и вращательного состояний эти процессы можно изучать раздельно, пренебрегая их взаимным влиянием.[2, С.26]

На протекание механодеструкцни большое влияние оказывает среда, в которой происходит процесс. Особенно интенсивно протекает деструкция в среде кислорода из-за образования пероксидных радикалов, которые принимают участие в дальнейших реакциях окисления. На рис 3.12 показано изменение пластичности при пластикации натурального каучука в различных средах. Наименьшая деструкция наблюдается в среде азота. Характер среды предопределяет и температурную зависимость механодеструкции. В среде инертного газа пластичность незначительно и монотонно убывает до ПО—-130 °С (т е. до температурной области вязкого течения). В среде же, содержащей кислород, деструкция подчиняется закономерностям процесса термоокисления, для которого характерен положительный температурный коэффициент. В результате наложения двух процессов (механодеструкции и термоокисления) температурная зависимость изменения свойств в результате деструкции списывается кривой с минимумом в области температур, близ-лчх к температуре вязкого течения.[1, С.222]

Расщепление энергетических уровней магнитных ядер представляет собой явление, приводящее к увеличению числа энергетических уровней в результате наложения магнитного поля на систему, содержащую магнитные ядра.[3, С.317]

Для некоторых сополимеров структура мезофаз является ла-меллярной и может быть охарактеризована ламеллами толщиной а, получающейся в результате наложения двух слоев: одного слоя толщиной dA, образованного цепями поливинилового блока в конформации более или менее беспорядочно свернутых клубков, и другого слоя толщиной d-Q, образованного полипептидными цепями в а-спиральной конформации, которые дают гексагональную упорядоченность и обычно сложены.[5, С.244]

Разумеется, сказанным мы вовсе не исчерпали весь комплекс свойств веществ, объединяемых названием высокомолекулярные соединения. Например, мы совершенно не касались вязкостных свойств. В реальных условиях не вся энергия, накапливаемая телом при воздействии внешней силы, превращается в силу упругого восстановления, поскольку часть ее рассеивается в виде тепловой энергии. В результате наложения эффектов упругости и вязкости возникает так называемая вязкоупругость. Кроме того, можно привести еще один пример типичных полимерных материалов, а именно волокон, в которых даже в нерастянутом состоянии имеются кристаллические участки. Совершенно очевидно, что как в природных, так и в синтетических волокнах в процессе прядения, а также в одновременно протекающем процессе вытяжки образуются кристаллические области. Следовательно, говоря о полимерных веществах в целом, можно с уверенностью утверждать, что хотя структура реальных высокомолекулярных соединений не является такой же простой, как рассмотренные нами модели, однако они обладают тем преимуществом, что учитывают цепное строение макромолекул.[7, С.35]

Важнейшая физич. характеристика любой молекулы — спектр ее энергетич. состояний, к-рый определяется след, внутримолекулярными процессами: движением электронов (особенно валентных), колебаниями атомных ядер и вращениями атомных групп около положений равновесия, поступательными и вращательными движениями молекулы как целого. Движения электронов в молекуле определяют ее электронный спектр, к-рый проявляется в ультрафиолетовой и видимой областях шкалы электромагнитных волн (Я—150— —1000 нм); колебания атомных ядер и вращения атомных групп определяют колебательный и вращательный спектры. В результате наложения нескольких внутримолекулярных процессов молекулярные спектры, наблюдаемые в широком диапазоне энергий, оказываются значительно сложнее атомных спектров. Расшифровка молекулярных спектров осуществима лишь благодаря принципиальной возможности независимого рассмотрения трех указанных выше процессов внутримолекулярного движения.[9, С.528]

Важнейшая физич. характеристика любой молекулы — спектр ее энергетич. состояний, к-рый определяется след, внутримолекулярными процессами: движением электронов (особенно валентных), колебаниями атомных ядер и вращениями атомных групп около положений равновесия, поступательными и вращательными движениями молекулы как целого. Движения электронов в молекуле определяют ее электронный спектр, к-рый проявляется в ультрафиолетовой и видимой областях шкалы электромагнитных волн (Я=150— —1000 к.к): колебания атомных ядер и вращения атсм-ных групп определяют колебательный и вращательный спектры. В результате наложения нескольких внутримолекулярных процессов молекулярные спектры, наблюдаемые в широком диапазоне энергий, оказываются значительно сложнее атомных спектров. Расшифровка молекулярных спектров осуществима лишь благодаря принципиальной возможности независимого рассмотрения трех указанных выше процессов внутримолекулярного движения.[8, С.531]

Как указывалось в разделе III.2.3, после термической обработки монокристаллов в течение определенного времени достигается некоторая постоянная толщина кристалла, соответствующая данной температуре термообработки. Исходя из общих феноменологических соображений термодинамики, можно сделать вывод о том, что для уменьшения энергетически невыгодной большой площади поверхности соотношение поверхности и объема должно быть минимальным, что соответствует кристаллам больших размеров. Тот факт, что макромолекулы полимеров, несмотря на указанное обстоятельство, складываются с образованием кристаллов, обладающих небольшой постоянной высотой, свидетельствует о существовании каких-то иных факторов, препятствующих увеличению толщины кристаллов. По мнению Питерлина, одним из таких факторов может быть следующий. Атомы сегментов макромолекул, расположенных в вертикальном направлении между двумя торцевыми поверхностями пластинчатого кристалла, колеблются в периодическом потенциальном поле, которое как бы «размазывается» в результате наложения колебаний атомов соседних цепей. .Благодаря этому свободная энергия цепи достигает минимального значения при превышении некоторой «критической» длины сегмента. Основные положения этой теории будут рассмотрены ниже.[7, С.188]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
2. Калинина Л.С. Анализ конденсационных полимеров, 1984, 296 с.
3. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
4. Парамонкова Т.В. Крашение пластмасс, 1980, 320 с.
5. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
6. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
7. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
8. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
9. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную