На главную

Статья по теме: Вязкостные характеристики

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Пользуясь функцией TI (с), во многих случаях удается получить инвариантные вязкостные характеристики растворов для широкого круга полимеров *. Для каждого растворителя и полимергомологов различных молекулярных масс получается инвариантная — обобщенная характеристика вязкостных свойств растворов. Для гибко-цепных полимеров она может охватывать область от предельно разбавленных растворов до полимеров в блоке. Для жесткоцепных полимеров обобщенная характеристика может быть построена от области предельно разбавленных растворов до концентраций, при которых наблюдается особенно быстрое увеличение вязкости из-за перехода в стеклообразное состояние.[10, С.213]

Следовательно, через 15 — 20 часов наступает как бы полное тик-сотропное восстановление структуры. Структура сцепления отвечает своему оптимуму, максимуму. Однако если сравнить упруго-прочностные, эластические и вязкостные характеристики системы после ее формирования и тиксотропного восстановления, то окажется, как это видно из данных, представленных в табл. 1, что прочность Рш при тиксотроп-ном восстановлении структуры понижена по сравнению с прочностью структуры, сформировавшейся при изготовлении данной системы. Сформировавшаяся структура (см. табл. 1) отвечает прочности в 120 000 дин/см-2, а прочность тиксотропно восстановленной структуры соответствует 116000 дин/см~2. Снизилась также и вязкость исследуемой системы — с 2 млн. 900 тыс. до 2 млн. 500 тыс. пуаз, тогда как коэффициент эластичности ет повысился.[7, С.184]

Псевдопластики — это системы, у которых отсутствует предел текучести. Типичная особенность их поведения — это постепенное уменьшение эффективной вязкости с увеличением скорости сдвига. Такое поведение характерно для растворов высокополимеров, расплавов, термопластов, каучуков и резиновых смесей. Принято считать, что псевдопластики — это аномально-вязкие жидкости, вязкостные характеристики которых не зависят от продолжительности деформации, т. е. изменение эффективной вязкости со скоростью сдвига происходит столь быстро, что временной эффект не может быть обнаружен методами обычной вискозиметрии.[8, С.59]

Псевдопластические жидкости (псевдопластики). Псевдоплас-стики—это системы, у которых отсутствует предел текучести. Типичная особенность их поведения — постепенное уменьшение эффективной вязкости с увеличением скорости сдвига. Такое поведение характерно для растворов полимеров, расплавов термопластов, каучуков и резиновых смесей. Принято считать, что псевдопластики— это аномально-вязкие жидкости, вязкостные характеристики которых не зависят от продолжительности деформации, т. е. изменение эффективной вязкости со скоростью сдвига происходит столь быстро, что временной эффект не может быть обнаружен методами обычной вискозиметрии.[9, С.76]

Создание однородного поля напряжений в условиях сдвига на практике реализуется относительно легко, а в случае растяжения требует множества ухищрений, поэтому большинство исследователей работают в условиях сдвигового поля. Оно создается либо с помощью ротационных систем (например, вращения цилиндра в цилиндре или конуса относительно плоскости) или длинных капиллярных трубок. Ротационные приборы подробно описаны в работе [51]. В предыдущем параграфе настоящей главы рассматривались вязкостные характеристики полимерных систем и лишь вскользь упоминались вязкоупругие свойства. Однако практически любая полимерная система способна при определенных условиях воздействия проявлять высокоэластическое деформационное состояние, в котором у нее наблюдаются большие обратимые деформации. Необратимые деформации у полимерных тел могут возникать уже при температурах, близких к температуре стеклования, но там они не играют основной роли.[1, С.175]

В нашей стране производятся и распространены приборы с двумя коаксиально расположенными цилиндрами - неподвижным наружным и полым внутренним, в полости которого находится магнит, окруженный жидкостью-посредником. Магнит жестко соединен с источником напряжения и датчиком вращения внутреннего цилиндра; при подаче напряжения на магнит он вращается и увлекает за собой жидкость-посредник. При увеличении напряжения большая масса жидкости увлекает во вращение внутренний цилиндр; момент начала вращения внутреннего цилиндра фиксируется датчиком. Исследуемый материал помещается между двумя цилиндрами, и его вязкостные характеристики сказываются на вращении внутреннего цилиндра.[3, С.440]

Следующие вязкостные характеристики используются для описания разбавленных растворов:[5, С.133]

Рис. V.7. Вязкостные характеристики бимодальной дисперсии полиметилмет-акрилата в бензине (78,4% твердых веществ), измеренные на реогониометре Вайсенберга.[11, С.252]

Таблица 9.1 Различные вязкостные характеристики[5, С.132]

высокие вязкостные характеристики: приведенная вязкость для 0,5%-х растворов[2, С.259]

ленные выше упругие и вязкостные характеристики эластомеров[4, С.17]

— вязкостные характеристики, 353[6, С.520]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
3. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
4. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
5. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
6. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
7. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
8. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
9. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
10. Виноградов Г.В. Реология полимеров, 1977, 440 с.
11. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.

На главную