На главную

Статья по теме: Упрощающие предположения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Пример 16.1. Значение нормальных напряжений [10, 13]. Рассмотрим схему процесса каландрования, приведенную на рис. 10.23. Сделаем те же самые упрощающие предположения, что и в разд. 10.5, только вместо ньютоновской или «степенной» жидкости воспользуемся жидкостью КЭФ 1см. уравнение (6.3-5) |, в которой нормальные напряжения возникают при простом сдвиге.[1, С.592]

Математическая модель неизотермического каландрования строится в предположении, что реологические свойства полимера могут быть описаны степенным уравнением (III.22). Кинематическая картина движения и все упрощающие предположения остаются такими же, как в случае симметричного вальцевания псевдопластичной жидкости. С учетом этих допущений математическая модель, в которую входят уравнения движения, уравнение неразрывности, уравнение теплопроводности, реологическое уравнение, а также начальные и граничные условия, имеет вид:[5, С.409]

Уже простые кинетические задачи для реакций низкомолекулярных соединений, связанные с определением концентрации реагирующих веществ, оказываются очень часто весьма сложными, и для получения решений в аналитическом виде необходимо вводить различные упрощающие предположения, например предположение о квазистационарности процесса. Совершенно очевидно, что в случае полимеризационных процессов трудности возрастают и особенно резко, когда речь идет о сетчатых полимерах, характеризующихся сложной топологической структурой. Именно поэтому наряду с кинетическим подходом появились и статистические, позволяющие установить основные закономерности процесса более простым способом. Неудовлетворенность результатами, к которым приводит использование статистических приемов, и невозможность использовать прямые кинетические подходы привели к развитию модельных методов, основанных на применении вычислительной техники.[6, С.9]

Фундамент кинетики гетерогенных каталитических реакций заложен в классических работах Лэнгмюра. Отсюда берет начало модель идеального адсорбированного слоя, базирующаяся на аналогии с представлениями кинетики гомогенных реакций. Эта модель использует следующие упрощающие предположения: равноценность всех участков поверхности катализатора и независимость[2, С.74]

Математическая модель неизотермического процесса каландрования полимеров строится в предположении, что реологические свойства материала могут быть с удовлетворительной точностью аппроксимированы степенным уравнением (11.22). Кинематическая картина движения и все упрощающие предположения сохраняются такими же, как в случае симметричного вальцевания псевдопластичной жидкости. С учетом этих допущений математическая модель, в которую входят уравнения движения, уравнение неразрывности, уравнение теплопроводности, реологическое уравнение состояния, а также начальные и граничные условия, имеет вид:[4, С.388]

Надо отметить, что с этих позиций различные научные теории, количественно описывающие физические явления, представляют собой математические модели природы. Примерами таких теорий являются кинематическая теория газов, кинетическая теория высокоэластич-ности резин, модель атома Бора, молекулярные теории полимерных растворов и каждое из уравнений переноса, рассмотренное в этой главе. Все они, как и всякая математическая модель, содержат упрощающие предположения. Например, в уравнениях переноса содержится допущение о сплошности среды и, что еще более неточно, необратимые процессы считаются локально равновесными. Важнейшим различием между математическим моделированием природных явлений и математическим описанием технологических процессов являются требуемый уровень точности и, конечно, уровень общности явлений, описываемых в том и другом случаях.[1, С.113]

Построение математической модели заключается в объединении ряда различных уравнений, являющихся следствиями общих законов, таких, как уравнения баланса, и в подборе соответствующих граничных условий, так, чтобы взаимосвязи между функциями и параметрами модели соответствовали взаимосвязям между функциями и параметрами в реальном процессе. Моделирование комплексных процессов, таких, как процессы полимерной технологии, проводят, расчленяя их на просто определяемые подсистемы. Затем строят математическую модель для каждой подсистемы, вводя соответствующие упрощающие предположения и используя известные общие закономерности. Из этих моделей составляют общую математическую модель процесса и проверяют ее экспериментально. Независимо от того, насколько она сложна, математическая модель будет мало полезна, если не будет в достаточной степени адекватна реальному процессу.[1, С.114]

Рассмотрим элементарную насосную стадию, осуществляемую в заполненном материалом пространстве, образованном двумя параллельными пластинами (рис. 12.21), движущимися в положительном направлении оси х. Как и в предыдущем случае с одной движущейся пластиной, предположим, что по ходу течения установлено препятствие типа формующей головки, в которой происходит формование полимера. Пусть находящийся между пластинами материал обладает свойствами вязкой ньютоновской жидкости. В этом случае обе поверхности будут увлекать расплав к головке. Без особых затруднений, используя обычные упрощающие предположения, можно определить профиль скоростей между пластинами, который описывается уравнением[1, С.453]

При определении топологической структуры в виде графа существенным оказывается не только связность вершин, но и длина ребра, т. е. в качестве количественной характеристики должна фигурировать функция ММР участков цепей (ребер). Для математического же графа существенна только связность вершин. В настоящее время нет другого метода количественного описания циклических графов, кроме детального перечисления всех его элементов. В случае большого числа элементов системы, с которыми приходится сталкиваться при описании сетчатого полимера, такой способ описания не может быть продуктивным, поэтому необходимо вводить упрощающие предположения, которые бы позволили в определенном приближении описывать сетчатый полимер. Одним из таких приближений является представление сетчатого полимера в виде ветвящегося дерева бесконечно больших размеров. Этот подход лег в основу широкоизвестного статистического метода описания процесса формирования сетчатого полимера и его упругих свойств в высокоэластическом состоянии. Однако уже с ранних работ стало ясно, что существенной чертой сетчатого полимера является наличие в нем циклов различного размера. Так, Флори [2] пишет, что переход от разветвленных структур к сетчатым обусловлен тем, что функциональные группы ветвящихся молекул могут «связываться между собой, давая сетчатую структуру». Тем не менее до самого последнего времени серьезных попыток количественно учесть это обстоятельство не было сделано.[6, С.6]

В соответствии с представлениями о механизме эмульсионной полимеризации Харкинса [221] и Юрженко [151] начальная систем содержит в водной фазе капли мономера, полученные при перемет; вании в присутствии эмульгатора; основная часть эмульгатора нах дится в мицеллярном состоянии, инициатор растворен в воде. Полим, ризация протекает в полимер-мономерных частицах, образующихся и мицелл после попадания в них радикалов из водной фазы. Полимер, зацию условно разделяют на три стадии: образование полимер-мономерных частиц, которое заканчивается в момент исчерпания эмульгатора, находящегося в мицеллярном состоянии и расходующегося на покрытие растущей поверхности частиц; полимеризация при постоянном числе полимер-мономерных частиц в присутствии капель мономера, обеспечивающих подпитку частиц мономером через водную фазу; завершающая стадия, которая начинается после исчерпания капель мономера. На основании этих представлений Смитом и Эвартом проведено количественное описание эмульсионной полимеризации [253, 254]. При выводе исходных уравнений делаются дополнительные упрощающие предположения: на первой стадии остается постоянной суммарная площадь поверхности полимер-мономерных частиц и мицелл; диффузия мономера через воду является быстрой и не лимитирует скорость полимеризации; кон центрация мономера в полимер-мономерных частицах остается постоянной, пока в системе имеются капли мономера.[3, С.66]

5,3. Общие граничные условия и упрощающие предположения[1, С.115]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Кирпичников П.А. Химия и технология мономеров для синтетических каучуков, 1981, 264 с.
3. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
4. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
5. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
6. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
7. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.

На главную