На главную

Статья по теме: Циклических мономеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Полимеризация циклических мономеров может протекать по ионному и ионно-координационному механизмам. Этот метод часто используется на практике (полимеризация ?-капролактама, окисей этилена и пропилена, пиридина, хинолина и др.). Характерной особенностью такой полимеризации является то, что она протекает без возникновения новых типов химических связей[3, С.36]

Реакция полимеризации циклических мономеров обратима, поэтому продукты полимеризации всегда содержат некоторое количество мономера, зависящее от условий реакции. Если тщательно удалить мономер и нагревать полимер в условиях его синтеза, то снова произойдет накопление мономера до восстановления первоначального соотношения мономера и полимера. Как следует из термодинамического уравнения —-— =--------, при тепловом эффекте полимериза-.[5, С.212]

Скорость полимеризации циклических мономеров возрастает с увеличением количества активатора (рис. 52). Наличие индукционного периода и максимума на кривой указывает на автокаталитический характер реакций. Индукционный период обусловлен медленно идущей реакцией гидролиза мономера водой (с. 213). Каталитическая роль воды доказывается тем, что с увеличением количества ее возрастает максимум на кривой, уменьшается индукционный период и сокращается время достижения равновесия.[5, С.214]

Иначе протекает радиационная полимеризация некоторых циклических мономеров (например, триоксана, ангидридов Лёйхса) в твердой фазе, когда межмолекулярные расстояния почти не меняются. При этом не возникают крупные дефекты и сохраняются преимущества, связанные с предварительным упорядочением молекул в его кристалле. Так как решетка мономера обладает известным геометрическим соответствием с макромолекулами, рост цепей на ней происходит как на матрице — вдоль определенного кристаллографического направления, и приводит к образованию ориентированных кристаллических волокон достаточной механической прочности, т. е. возникновение макромолекул сопровождается формованием волокна («химическое формование»).[5, С.258]

В заключение отметим, что ионно-координационная полимеризация лучше, чем рассмотренные выше виды полимеризации, обеспечивает возможность получения полимеров заданной регулярной структуры и молекулярно-массового распределения. Это определяется координирующим действием комплексных каталитических систем в элементарном акте синтеза: каждая молекула мономера внедряется в структуру каталитического комплекса, а растущая цепь удаляется от него. Наиболее распространенными каталитическими системами в этом виде цепной полимеризации являются комплексы галогенидов металлов переменной валентности с алкилпроизвод-ными алюминия, зт-аллильные комплексы металлов переменной валентности, оксидно-хромовые катализаторы. Они обеспечивают регулярное построение каждой макромолекулы полимера, а часто и формирование кристаллических структур из нескольких макромолекул. У полимеров а-замещенных этиленовых углеводородов образуются изо- и синдиотактические структуры, у полимеров диенов — цис- и гранс-изомеры. Особым видом ионной и ионно-коор-динационпой полимеризации является полимеризация циклических мономеров, проходящая за счет разрыва а-связи в цикле мономера с образованием линейных макромолекул.[1, С.58]

Одним из перспективных направлений использования ионной и ионно-коорди-национной полимеризации является полимеризация циклических мономеров за счет разрыва а-связи в цикле и образования полимера линейной природы.[1, С.57]

Деполимеризация гетероцепных полимеров, состоящих из элементарных звеньев, способных к циклизации, приводит к образованию циклических мономеров по реакции, обратной реакции полимеризации циклов:[2, С.111]

Деполимеризация гетероцепных полимеров, состоящих из элементарных звеньев, способных к циклизации, приводит к образованию циклических мономеров по реакции, обратной реакции полимеризации циклов:[2, С.190]

Способность мономеров участвовать в радикальной или ионной полимеризации зависит от различных факторов [1], в частности от поляризации двойной или других связей (например, в случае циклических мономеров), числа заместителей, природы инициатора и температуры. Если способность мономера к радикальной полимеризации можно установить сравнительно легко, то в случае ионной полимеризации, когда нужно получить полимеры с высокой[4, С.16]

При анионной полимеризации а-метилстирола устанавливается (можно наблюдать) термодинамическое равновесие (зависящее от температуры) между мономером и полимером. Интенсивно-зеленая окраска раствора инициатора при добавлении мономера переходит в красную за счет образования карбанионов. При низкой температуре (между —40 и —70°С) образуются «живущие» цепи, и раствор становится вязким. При нагревании раствора полимер депо-лимеризуется, а при охлаждении вновь полимеризуется. Температура, при которой равновесие сдвинуто полностью в сторону мономера, называется предельной температурой [14], для а-метилстирола она составляет 60 °С, в то время как для большинства остальных мономеров с двойной С = С-связью предельная температура лежит выше 250 °С. Предельная температура некоторых мономеров, полимеризующихся по С = О-связи, и ряда циклических мономеров также относительна низка; например, для формальдегида или триоксана она равна 126 °С, для тетрагидрофурана 85 °С. Несмотря на свою термодинамическую неустойчивость шоли-а-метилсти-рол может быть выделен после обрыва «живущих» цепей, поскольку блокирование концов цепей обрывом на молекулах воды или двуокиси углерода кинетически предотвращает деполимеризацию. Только при температурах выше 200 °С термическое разложение полимера протекает с высокими скоростями (см. опыт 5-14),[4, С.143]

Инициаторы полимеризации циклических мономеров могут быть нонами или молекулами; в общем виде реакция может быть представлена следующей схемой:[5, С.213]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
2. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
3. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
4. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
5. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
6. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
7. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
8. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
9. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
10. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
11. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
12. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
13. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
14. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
15. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
16. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
17. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную