На главную

Статья по теме: Достижения оптимальных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Залогом достижения оптимальных эксплуатационных характеристик любой червячной машины является соответствие между ее конструктивными параметрами и технологическими свойствами перерабатываемой резиновой смеси. Обеспечение такого соответствия является непростой задачей, поскольку используются тысячи[9, С.257]

Наиболее благоприятные условия для качественного оформления сечения и достижения оптимальных характеристик готовою ремня создаются при диафрагменном и челюстном способах вулканизации. Формование сечения в диафрагментом прессе осу-ществляетсн давлением резиновой диафрагмы на кольцевые сердечники, помешенные в канавки вудканизационных форм. Обычно давление греющего пара, подающегося внутрь формы на 0,4— 0,6 МПа меньше, чем давление на диафрагму (рис. 89), что обеспечивает качественное формование сечения. В отечественной промышленности дли вулканизации кордпшуровых ремней длиной до 4,5 м разработано три модификации диафрагменных прессой для ремней длиной 400—2000, 1800—3200 и 2500-4500 мм. Вулканизаторы работают в комплекте со складными четырех-секционными формами.[3, С.220]

Соответственно с уменьшением полярности системы (ионные взаимодействия заменяются на взаимодействия за счет водородных связей) уменьшаются прочность и остаточное сжатие вулканизатов. Для достижения оптимальных механических свойств вулканизаты с амидными сшивками необходимо усиливать техническим углеродом. Подобные, хотя и более сложные структуры получают, применяя полиамины, соединения, содержащие амино- и иминогруппы, а также N-содержащие полимерные смолы. Этиленгликоль и аналогичные ему вещества способствуют диспергированию вулканизующего агента и тем самым улучшают свойства вулканизатов. Амидные поперечные связи образуются также при взаимодействии карбоксильных групп эластомера с полиизоцианатами [58; 60; 75; 76], например с л-фенилендиизоцианатом, л-толуилендиизоцианатом, гексаметилендиизоцианатом, 1,3-бис(3-изоцианат-я-толил) мочевиной. Реакция протекает при комнатной температуре с выделением диоксида углерода из промежуточного продукта реакции. Она применяется только для вулканизации клеев и пропиточных составов для пористых материалов. При введении изоцианатов на вальцах наблюдается сильная подвулканизация смесей.[13, С.167]

Сера является наиболее распространенным вулканизирующим веществом для многих каучуков. Степень чистоты применяемой серы должна быть не менее 99,5 %. Равномерное распределение серы в смеси — необходимое условие для достижения оптимальных физико-механических показателей вулканизатов. Наличие в резинах свободной серы указывает на неправильную рецептуру смеси или на недовулканизацию. Суть процесса вулканизации заключается в образовании трехмерной сетчатой структуры из линейных макромолекул каучука при нагревании его, например, с серой. Атомы серы присоединяются по двойным связям макромолекул и образуют между ними сшивающие дисульфидные мостики, как показано на рис. 3.1. Сетчатый полимер прочнее и проявляет повышенную упругость — высокоэластичность. В зависимости от количества сшивающего агента (серы) можно получать сетки с различной частотой сшивки. Предельно сшитый каучук — эбонит — не обладает эластичностью и представляет собой твердый материал. Температура вулканизации должна быть выше температуры плавления серы (120 °С), но ниже температуры плавления каучука (180-200 °С).[2, С.24]

В бутадиен-стирольный каучук растворной полимеризации следует вводить высокодисперсные печные сажи, которые придают каучуку хорошие технологические свойства при 60—130°С и обеспечивают достаточно высокий комплекс физико-механических свойств. Сополимеры растворной полимеризации требуют меньших количеств серы и ускорителей, чем эмульсионные БСК, для достижения оптимальных свойств.[1, С.280]

Затем преполимер смешивают с удлинителями цепи. Эта операция проводится в специальных самоочищающихся смесительных головках с высокой скоростью перемешивания (частота вращения мешалки до 30000 об/мин) в течение 5 — 15с, далее реакционная масса поступает в нагретые формы, помещенные на обогреваемые столы (продолжительность пребывания массы в формах 60—10 мин при 100— 140 °С). Для достижения оптимальных свойств извлеченные из форм изделия подвергаются термостатированию при 100 — *120°С в течение нескольких часов.[1, С.531]

Другая особенность процесса полимеризации этилена связана с изменением фазового состояния смеси этилен —полиэтилен, В зависимости от температуры, давления и концентрации полиэтилена эта смесь в реакторе может быть гомогенной или расслаиваться на две фазы (см. гл. 3). Одна из них представляет собой раствор полиэтилена в этилене с малой вязкостью, другая — раствор этилена в расплавленном полиэтилене с высокой вязкостью. Для достижения оптимальных скоростей полимеризации реакцию следует проводить в гомогенных условиях. Кроме того, наличие высоковязкой фазы в реакторе может вызвать налипание ее на стенки реактора с образованием сплошной пленки, толщина которой тем больше, чем ниже скорость движения реакционной массы. Пленка затрудняет отвод теплоты. На рис. 2.8 показано, что образование пленки толщиной 1 мм снижает коэффициент теплопередачи в промышленном реакторе трубчатого типа более чем вдвое [12].[4, С.23]

Важным параметром является летучесть растворителя. Подходящие комбинации полимер — растворитель наряду с параметрами взаимодействия % можно найти в обобщающих публикациях [10]. Быстрое испарение растворителя приводит к быстрому росту вязкости и образованию неоднородной пленки по всей площади подложки. Слаболетучие растворители испаряются слишком долго, что повышает вероятность налипания частиц загрязнений на поверхность пленки и возникновения пористости. В ряде случаев удобно использовать комбинацию разных растворителей для достижения оптимальных свойств пленки.[7, С.19]

Жесткие сборочно-формующие барабаны в основном используются для совмещенной сборки и для второй стадии раздельной сборки. Жесткий сборочно-фэрмующий барабан состоит из металлической конструкции с раздвижными секторами. Секторы разжимаются и сжимаются при помощи различных механических систем или раздуваемых резиновых камер. На наружную поверхность жесткого барабана иногда надевается эластичная диафрагма для обеспечения равномерного смещения нитей корда формуемого каркаса покрышки при разжатии секторов и для предотвращения попадания резиновой смеси в зазоры между секторами. К преимуществам формования покрышек на жестком сборочно-формующем барабане можно отнести обеспечение стабильного и точного воспроизведения требуемых геометрических контуров и размеров барабана в течение длительного времени эксплуатации оборудования, а также наличие жесткой поверхности металлического барабана, необходимой для достижения оптимальных условий при прикатке резинокордных слоев каркаса покрышки.[8, С.241]

Для достижения оптимальных условий переработки пластизоли даже при низком содержании пластификатора должны обладать низкой вязкостью в отличие от других марок, которые должны иметь[11, С.261]

Для достижения оптимальных характеристик прочности изменение исходной структуры в процессе нагружения при заданном режиме эксплуатации может быть более существенным, чем формирование исходной надмолекулярной структуры.[12, С.298]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
3. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
4. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Мухутдинов А.А. Альбом технологических схем основных производств резиновой промышленности, 1980, 72 с.
7. Беднарж Б.N. Светочувствительные полимерные материалы, 1985, 297 с.
8. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
9. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
10. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
11. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
12. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
13. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
14. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
15. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
16. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
17. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную