На главную

Статья по теме: Характеристики образующегося

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Стадия роста цепи является основной в процессе поликонденсации. Она определяет главные характеристики образующегося полимера: молекулярную массу, состав сополимера, распределение по молекулярным массам, структуру полимера и другие свойства. Прекращение роста цепи макромолекулы может происходить под влиянием физических факторов, например, в результате увеличения вязкости системы, экранирования реакционных центров цепи, сворачивание ее в «плохом» растворителе и других. При прекращении роста реакционный центр сохраняет химическую активность, однако, как правило, не имеет подвижности, необходимой для протекания реакции [14]. Другой причиной является образование однотипных, не взаимодействующих функциональных групп на обоих концах полимерной цепи за счет избытка одного из мономеров. На этом принципе основан один из способов регулирования молекулярной массы полимеров (синтез сложных полиэфиров, полиамидов и др.).[1, С.159]

В частности, принципиальным образом меняются константы сополимеризации изобутилена с изопреном. Состав катализатора влияет на выход полимера и молекулярные характеристики образующегося бутилкаучука (табл.7.11).[4, С.331]

Таким образом, на примере весьма быстрой жидкофазной электрофильной полимеризации ИБ четко показано влияние геометрии реакционного объема на молекулярно-массовые характеристики образующегося полимера и возможность перехода от одного макрокинетического режима к другому (режимы А, Б, В) за счет изменения радиуса R зоны реакции. При увеличении радиуса R ши-[4, С.146]

Помимо этих основных стадий, определяющих скорость полимеризации, протекают следующие побочные реакции, не влияющие на скорость процесса, но оказывающие большое влияние на молекулярные и структурные характеристики образующегося полиэтилена.[2, С.53]

Возникновение или отсутствие градиента температур в быстрых процессах полимеризации, его изменение при переходе от одного макроскопического режима к другому (типа А, Б, В) оказывают заметное влияние на молекулярно-массовые характеристики образующегося полимера (см. табл. 3.4). Это связано с тем, что при малых значениях R температура в зоне реакции (при макроскопическом режиме типа А) распределена относительно равномерно, в то время как возникновение градиента температур в виде факела по координатам реакционного объема (макроскопические режимы Б и В) при радиусах выше некоторого критического значения RKp (под RKp понимается значение R, обусловливающее переход из режима типа А в режим типа Б) ведет к уширению ММР за счет накопления доли низкомолекулярной фракции. Следует иметь в виду, что ММР полимерного продукта уширяется по мере удаления от точки ввода катализатора вдоль оси х, что является следствием увеличения температуры и образования макромолекул при различных температурных условиях вдоль оси х. Расчеты адекватно отражают тенденцию влияния геометрических размеров реакторов при проведении жидкофазных весьма быстрых процессов полимеризации на молекулярно-массовые характеристики образующихся полимерных продуктов и согласуются с экспериментом (табл. 3.4) [9].[4, С.146]

Ход процесса полимеризации определяется количеством и природой алкила алюминия, присутствующего в системе. Важное значение имеет также, в какой форме присутствует алкилалюминий в системе после восстановления соли металла. Природа алкила оказывает влияние на механизм полимеризации, который в свою очередь определяет характеристики образующегося полимера. Для объяснения влияния алкила на средний молекулярный вес и молекулярновесовое распределение полимора можно воспользоваться следующей схемой [263]:[6, С.132]

Наибольшее распространение в промышленности получили процессы полимеризации ВХ в дисперсных средах: суспензионная, микросуспензионная и эмульсионная. Благодаря хорошему теплоотводу через воду, которая является дисперсионной средой, такие процессы осу ществляются в условиях, близких к изотермическим. Поэтому для полимеризации в дисперсных системах главной задачей является исследование влияния дисперсной системы на закономерности процесса и характеристики образующегося полимера.[5, С.62]

Таким образом, в общем случае внутренний теплосъем за счет кипения компонентов реакционной смеси является достаточно эффективным способом тер-мостатирования химических реакций. Ограничение температуры реакционной смеси в процессе быстрой полимеризации в жидкой фазе за счет кипения части мономера или растворителя по-разному влияет на протекание реакции в зависимости от радиуса реакционной зоны R. В области малых радиусов (Rопределенном интервале температур перестают зависеть от исходной температуры сырья (рис. 3.27) [21].[4, С.163]

характеристики образующегося полимера[3, С.155]

характеристики образующегося полимера[4, С.155]

массовые характеристики образующегося полимера (см. табл. 3.4). Это связано[3, С.146]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
3. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
4. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
5. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
6. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.

На главную