На главную

Статья по теме: Касательные напряжения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Измерительные схемы- прибора позволяют регистрировать: касательные напряжения с помощью датчика перемещений и сменного торсиона; нормальные напряжения (эта система измерений здесь не описывается, поскольку проблема измерения нормальных напряжений при сдвиговом течении не рассматривается в данной книге); колебания нижней плоскости, т. е. задаваемые колебания. Прибор укомплектован набором торсионов с жесткостью от 0,1 до 103 Н-м/рад (106—1010 дин-см/рад), а индукционный датчик перемещений с соответствующим вторичным прибором может работать в шести пределах — от 5 до 2000 мкм. В целом система измерения крутящего момента пригодна для работы в довольно широких пределах— от 5-10~7 Н-м до 5 Н-м, что отвечает интервалу касательных напряжений (при использовании набора конусов, имеющихся в комплекте рабочих узлов прибора) от Ь10~' до 1 • 107 Па. Система задания колебаний позволяет варьировать амплитуду деформаций в пределах от 1,6-10~3 до 3,1 -\Сгг рад. При использовании измерительного узла типа конус — плоскость с углом между образующей конуса и плоскостью 2° эти смещения отвечают деформациям от 5 до 100%. Однако вблизи нижнего предела измерений возможны отклонения от синусоидальной формы колебаний, так что наиболее целесообразно проводить измерения при амплитудах деформации, больших 5-10~3 рад. В обычном исполнении реогониометра оба сигнала — от задатчика колебаний и от смещений верхнего конуса — подаются на двухканальный самописец (потенциометр или осциллограф) и их амплитуды, а также разность фаз находятся «вручную», по записи на ленте самописца. Однако изготовитель прибора поставляет также дополнительное электронное оборудование для автоматической регистрации амплитуд сигналов и разности фаз колебаний с выходом на цифровые показывающие приборы. Измерительные схемы реогониометра работают на несущей частоте 5000 Гц и снабжены системой фильтров, что позволяет получать довольно четкие сигналы, легко поддающиеся расшифровке. В то же время использование системы фильтров делает незаметным для экспериментатора возможные ошибки, связанные с недостатками механической части прибора (это удобно для серийных измерений, но может привести к серьезным ошибкам при научных исследованиях).[13, С.131]

Подстановкой (8.4-3) в (8.4-2) можно показать, что, когда нормальные напряжения достигают максимальной величины, касательные напряжения исчезают. Следовательно, имеется определенный набор взаимно перпендикулярных плоскостей с направлениями am и am + я/2, на которых нормальные_ напряжения соответственно достигают максимального и минимального значений, а касательные напряжения стремятся к нулю. Эти плоскости называются главными плоскостями, а нормальные напряжения—главными напряжениями. Дальнейшее развитие этого рассуждения приводит к выводу о том, что напряженное состояние в точке Р полностью описывается главными нормальными напряжениями и ориентацией главных плоскостей. Резумеется, любое изменение механического напряжения, воздействующего на систему, может влиять на величину главных напряжений и ориентацию главных плоскостей, причем оба фактора в системе могут изменяться от точки к точке.[1, С.225]

В коллоидной мельнице или центробежном насосе формирование капель происходит при выдавливании жидкости в узкий зазор между ротором, вращающимся с большой скоростью, и неподвижным статором. Вследствие большой скорости и малого зазора возникают большие касательные напряжения, обеспечивающие разрыв жидкости на капли. Регулированием частоты вращения ротора и зазора между ротором и статором можно приспособить коллоидную мельницу для жидкостей с различной вязкостью и иными характеристиками. В качестве примера получения высоко дисперсной эмульсии можно выделить способ получения эмульсии ВХ путем диспергирования компонентов в многоступенчатом центробежном насосе при 5-30°С [173]. При этом частота вращения ступеней и давление насоса регулируются в зависимости от требований к качеству пластизолей. Кратность циркуляции жидкости через насос составляет 20. Схема диспергирования с применением центробежного насоса представлена на рис. 1.29.[9, С.57]

Сравнение уравнений (8.4-6) и (8.4-3) показывает, что максимальные касательные напряжения направлены под углом 45° к главной плоскости.[1, С.225]

Таким образом, при больших деформациях простого сдвига имеется ненулевая разность нормальных напряжений, пропорциональная квадрату деформации s2, в то время как касательные напряжения пропорциональны 5.[6, С.27]

Областью деформации называется область А^А^В^С^С^В^ в межвалковом пространстве, где происходит деформация материала. Материал, деформируясь, оказывает сопротивление деформации, и со стороны материала на валок действуют: 1) нормальное удельное давление /?, обусловленное сопротивлением материала деформации сжатия и сдвига; 2) касательные напряжения, или напряжения сдвига, т, обусловленные стремлением материала перемещаться (скользить) относительно вращающихся (перемещающихся) поверхностей валков; касательные напряжения вызваны изменением условий деформации (изменением формы), наличием адгезионных и вязкоупругих свойств материала.[5, С.114]

Семейство этих уравнений можно выразить графически с помощью круга Мора (рис. 8.2). Центром круга на оси абсцисс, вдоль которой откладываются нормальные напряжения, является точка а„, = = (Omax + omln)/2, радиус круга равен ттах = (сттах — стт1п)/2. Любая точка круга относится к произвольной плоскости, расположенной под углом 2а к главной плоскости. Очевидно, что касательные напряжения принимают максимальное значение для угла 45° к главной плоскости.[1, С.226]

Полимер оказывает сопротивление деформированию вследствие наличия межмолекулярного взаимодействия, а также вследствие изменения конформации макромолекул. Все силы, действующие при этом на элементарный объем, мысленно выделенный в полимере, могут быть сведены к системе сил так, как это показано на рис, 107, Если плоскость А движется в направлении, указанном стрелкой, относительно плоскости ?, то на гранях элементарной! кубика возникают касательные напряжения от, вызывающие егс скашивание, В полимерах, отличающихся высокоэластичностьтой при сдвиге кроме касательных возникают и нормальные па пряже; пия, направленные перпендикулярно граням элементарного кубика. Для осей координат применяются цифровые обозначения, сосюя-щие из двух подстрочных индексов, первый из этих индексов ука-[3, С.242]

С целью графической интерпретации напряженного состояния в точке чаще всего пользуются кругом Мора. Возможна и другая геометрическая интерпретация напряженного состояния частицы. В главных осях его можно представить вектором ор = 01X1+^2X2 + ^3X3, где х\, Хг, Хз — соответствующие орты. Плоскость 01 + 02 + +03=0, проходящая через начало координат, называется девиаторной, или октаэдрической. Октаэдрические плоскости данной напряженной частицы одинаково наклонены к ее главным осям. Легко убедиться, что при этом условии нормальные и касательные напряжения на всех восьми гранях мысленно выделенного октаэдра будут соответственно равны:[10, С.23]

Большой интерес представляет распределение нормальных напряжений на поверхности залитых элементов. На рис. 6.6 показана зависимость Кф от угла при гексагональной упаковке армирующих элементов [37, 41, 42]. Нормальные напряжения на границе раздела могут иметь как положительные (растяжение), так и отрицательные (сжатие) значения, причем с увеличением объемной доли армирующих элементов возрастает доля их поверхности, на которой действуют напряжения растяжения, и значение этих напряжений. При малом содержании армирующих элементов на поверхности раздела наблюдается только сжимающее напряжение, вызывающее увеличение адгезии [37, 44, 46]. Наиболее опасными являются растягивающие нормальные напряжения, вызывающие появление трещин на границе раздела и нарушение адгезии, а в некоторых случаях и разрушение залитых деталей. Касательные напряжения, возникающие вокруг залитых деталей, также могут приводить к местному отслаиванию компаунда. В тех случаях, когда армирующие элементы закреплены на какой-нибудь подложке, распределение напряжений более сложное, причем увеличивается роль растягивающих напряжений и вся конструкция деформируется (коробление).[8, С.172]

Полимер оказывает сопротивление деформированию вследствие наличия межмолекулярного взаимодействия, а также вследствие изменения конформации макромолекул. Все силы, действующие при этом на элементарный объем, мысленно выделенный в полимере, могут быть сведены к системе сил так, как это показано i рис, 107. Если плоскость А движется в направлении, указ; стрелкой, относительно плоскости Б, то на гранях элементарно! кубика возникают касательные напряжения от, вызывающие егс скашивание. В полимерах, отличающихся высокоэластичностью при сдвиге кроме касательных возникают и нормальные напряж* пия, направленные перпендикулярно граням элементарного кубика.'! Для осей координат применяются цифровые обозначения, сосюя-1 щие из двух подстрочных индексов, первый из этих индексов ука- ^[7, С.242]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Рагулин В.В. Технология шинного производства Изд.3 1981г, 1981, 263 с.
5. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
6. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
7. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
8. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
9. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
10. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
11. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
12. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
13. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
14. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
15. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
16. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
17. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
18. Виноградов Г.В. Реология полимеров, 1977, 440 с.
19. Колтунов М.А. Прочностные расчет изделий из полимерных материалов, 1983, 240 с.
20. Липатов Ю.С. Теплофизические и реологические характеристики полимеров, 1977, 244 с.
21. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
22. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
23. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
24. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
25. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
26. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
27. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
28. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную