Напряженное состояние в некоторой точке деформированного тела зависит от ориентации элементарной площадки и действующих на ней нормальных и касательных напряжений и определяется тензором напряжений GIK*. Этот тензор-П-ранга состоит из 9 компонент и может быть записан в виде квадратной матрицы:[4, С.13]
На границе двух несмешивающихся жидкостей должны удовлетворяться следующие условия: а) непрерывность как тангенциальных, так и нормальных составляющих скорости (это подразумевает отсутствие проскальзывания на границе); б) непрерывность касательных напряжений; в) баланс разности нормальных напряжений на поверхности с поверхностными силами. Таким образом, нормальные напряжения на поверхности не непрерывны, и их скачок определяется выражением[1, С.116]
Многие полимерные системы в текучем состоянии представляют собой упруго-вязкие тела, в которых существуют надмолекулярные структуры, обусловливающие проявление высокой эластичности. При деформировании всегда происходит их разрушение, сколь бы ни были малы напряжения и скорости сдвига. Экспериментально это разрушение отмечается только при достаточно высоких напряжениях и скоростях сдвига, когда значительное число прочных структурных элементов (ассоциатов макромолекул — пачек и т. п.) не успевает самопроизвольно распадаться под действием теплового движении и происходит их принудительное разрушение под действием сдвига. Такому резко выраженному разрушению структуры предшествует более или менее значительное развитие высокоэластической деформации. Ему отвечает достижение критических (предельные) значений высокоэластической деформации, касательных и нормальных напряжений. Переход через предельные значения касательных напряжений принято называть переходом через предел прочности. В отличие от твердых тел у полимерных систем о текучем состоянии переход через предел прочности может не сопровождаться нарушением сплошности тела вследствие наличия у них большого числа легко разрушающихся н легко восстанавливающихся связей между структурными элементами.[2, С.243]
Во-первых, у систем, проявляющих резко выраженную высокую эластичность, максимум нормальных напряжений может иметь значительно более высокое значение, чем максимум касательных напряжений.[2, С.246]
Можно выделить три вида деформации: простой сдвиг, одноосное растяжение, всесторош(ее сжатие (или растяжение) (рнс. 5.1) При простом сдвиге деформирование происходит под действием тангенциальных (касательных) напряжений о , действующих на поверхности образца При этом изменяется форма образца, а объем остается постоянным. ДсфОруацня сдвига "[ определяется тангенсов угла а при сдвиге верхней плоскости АВ относительно нижней ОО' в положение А' В', т. е тангенсом угла поворота а прямой ОА [ОА — расстояния между плоскостями). Модуль сдвига О ст/Т- Скорость[3, С.281]
Определение нормальных и касательных напряжений, возникающих при давлении смеси на стенки камеры, важно как для конструктора при изготовлении смесителей, так и для технолога при выборе оптимальных режимов работы 1[11]. Губер [10] экспериментально определял соотношения между давлениями и напряжениями сдвига при изготовлении смесей в лабораторном резино-смесителе. Было выяснено, что давление р (среднее), оказываемое резиновой смесью на стенки камеры при ее обработке в закрытом[4, С.151]
Рис 116 Зависимость РОСт касательных напряжений с увеличением касательных и нор- скорости сдвига также замедляется. Поэтому мальных напряжений если представить графически зависимости от скорости сдвига. касательных и нормальных напряжений от скорости сдвига так, чтобы логарифмические масштабы всех рассматриваемых величин были равны, то получится картина, схематически представленная на рис. 116. Кривые течения и зависимости о от скорости сдвига могут пересекаться как в области перехода от нижней ньютоновской к структурной ветви на кривой течения, так и на структурной ветви Кривой течения. Иногда это пересечение отсутствует. Тогда вся кривая зависимости <т от скорости сдвига располагается левее кривой течения.[5, С.262]
Теория Давиденкова и Фридмана представляет собой синтез гипотезы наибольших касательных напряжений и гипотезы наибольших удлинений. Характеристикой напряженного состояния по этой теории является отношение наибольшего касательного напряжения к наибольшему приведенному растягивающему напряжению. В теории Волкова, учитывающей микронеоднородность реальных материалов, при всех возможных напряженных состояниях (даже при объемном сжатии) хрупкое разрушение является результатом действия микроскопических растягивающих напряжений. Принципиально важно то обстоятельство, что в статистической теории прочности полностью исключена концепция, по которой причиной разрушения могут быть предельные деформации (гипотеза предельных деформаций).[7, С.59]
Многие полимерные системы в текучем состоянии представляют собой упруго-вязкие тела, в которых существуют надмолекулярные структуры, обусловливающие проявление высокой эластичности. При деформировании всегда происходит их разрушение, сколь бы ни были малы напряжения и скорости сдвига. Экспериментально это разрушение отмечается только при достаточно высоких напряжениях и скоростях сдвига, когда значительное число прочных структурных элементов (ассоциатов макромолекул — пачек и т. п.) не успевает самопроизвольно распадаться под действием теплового движения и происходит их принудительное разрушение под действием сдвига- Такому резко выраженному разрушению структуры предшествует более или менее значительное развитие высокоэластической деформации. Ему отвечает достижение критических (предельных) значений высокоэластической деформации, касательных и нормальных напряжений. Переход через предельные значения касательных напряжений принято называть переходом через предел прочности. В отличие от твердых тел у полимерных систем в текучем состоянии переход через предел прочности может не сопровождаться нарушением сплошности тела вследствие наличия у них большого числа легко разрушающихся и легко восстанавливающихся связей между структурными элементами.[5, С.243]
Можно также показать, что линейные инварианты тензоров напряжения я деформации, а также интенсивности касательных напряжений и деформаций сдвига связаны простыми соотношениями:[8, С.30]
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!! Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.