На главную

Статья по теме: Коррозионная стойкость

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Наряду с прочностными и пластическими свойствами большой интерес вызывают исследования других инженерных свойств в нанокристаллических материалах, таких как коррозионная стойкость, износ, демпфирующая способность, а также проявление перспективных электрических, магнитных, оптических свойств и т. д. Обнаружение этих уникальных свойств открывает перспективы практического применения наноструктурных материалов. Такие исследования только недавно начаты, но в литературе уже имеются сведения о работах, представляющих, например, непосредственный интерес для создания новых мощных постоянных магнитов на основе нано структурных ферромагнетиков [380]. С другой стороны, хорошо известно [335, 348], что сверхпластическая формовка является высокоэффективным способом получения изделий сложной формы. В этой связи сверхпластичность ультрамелкозернистых ИПД материалов, наблюдавшаяся при относительно низких температурах или высоких скоростях деформации, весьма перспективна с точки зрения повышения производительности формовки и увеличения стойкости штамповых оснасток.[3, С.222]

Санитарно-технические трубы и оборудование. Трубы из пластмасс получили значительное распространение в системах водоснабжения и канализации. Важнейшие их достоинства — коррозионная стойкость и небольшая масса. Трубы м. б. надежно соединены друг с другом при помощи специальных фасонных частей (изготовляемых обычно из того же материала, что и сами трубы), а также сваркой. Напорные трубы изготовляют из полиэтилена, винипласта, полипропилена, безнапорные канализационные трубы — из полиэтилена высокой плотности и винипласта, дренажные — из полиэтилена высокой плотности. Из листов винипласта м. б. изготовлены вентиляционные короба, а также трубы и желоба наружных водостоков. Пластмассы, окрашенные в различные цвета, используют также для изготовления ванн, моек, умывальников, сифонов, кранов, смесителей и др. сапитарно-технич. оборудования.[11, С.482]

Санитарно-технические трубы и оборудование. Трубы из пластмасс получили значительное распространение в системах водоснабжения и канализации. Важнейшие их достоинства — коррозионная стойкость и небольшая масса. Трубы м. б. надежно соединены друг с другом при помощи специальных фасонных частей (изготовляемых обычно из того же материала, что и сами трубы), а также сваркой. Напорные трубы изготовляют из полиэтилена, винипласта, полипропилена, безнапорные канализационные трубы — из полиэтилена высокой плотности и винипласта, дренажные — из полиэтилена высокой плотности. Из листов винипласта м. б. изготовлены вентиляционные короба, а также трубы и желоба наружных водостоков. Пластмассы, окрашенные в различные цвета, используют также для изготовления ванн, моек, умывальников, сифонов, кранов, смесителей и др. санитарно-технич. оборудования.[13, С.480]

Фторопласты относятся к гамме фторсодержащих полимеров, на основе которых разработана широкая группа пластмасс, обладающих рядом весьма полезных свойств. К ним относятся высокие тепло- и термостойкость, негорючесть, химическая и коррозионная стойкость. Они, как правило, сохраняют высокие электроизоляционные характеристики в интервале температур -200...+260 °С. Фторопласты имеют самый низкий среди пластмасс коэффициент сухого трения. Благодаря уникальному комплексу свойств фторопласты применяются в химической промышленности, аэрокосмической, автомобильной и высокоскоростной транспортной технике, а также в медицине, в пищевом и текстильном оборудовании.[10, С.36]

Стеклокпрд как армирующий материал в производстве покрышек появился в США в середине fit)-x годов, и до сих пор только в США этот вид корда имеет широкое применение (к'2$ тыс. т в год). Достоинства стеклокорда — высокие значения модуля и сопротивления разрыву, коррозионная стойкость, низкая (по сравнению с металлокордом) плотность, относительно невысокая стоимость. Главный недостаток стеклокорда хрупкость и абразивная истираемость волокон п пучке — преодолевается путем «замасливания» — нанесения на волокна в процессе их получения химического и полимерного изолирующего покрытия. Сначала подокно обрабатывается каким-либо кремннеорганическим соединением {чаще всего-у-аминопропилтриэтоксисиланом NH^CHaCHa-•CHaSi(OCaH5);0, взаимодействующим с поверхностью силикатного стекла, а затем полимерным пропиточным составом (па осно-пе эпоксидных, фенольных и других олигомеров). При этом не только снижается абразивная истираемость, но и обеспечипается удовлетворительная прочность связи стеклокорда с резиной.[2, С.16]

Функциональные показатели количественно характеризуют растворы и получаемые покрытия. Среди первых можно выделить: скорость осаждения (мкм/ч, мг/сма-ч), температуру, кислотность и другие технологические показатели применения раствора; чувствительность к активации, определяемую по обратной величине периода индукции реакции металлизации (С-1) или по минимальному количеству активатора на поверхности диэлектрика (мг/см2); состав и возможные отклонения концентраций компонентов от оптимального. Качество покрытий оценивают по химическому составу; физическому составу и структуре; механическим свойствам (твердость, пластичность, эластичность, вязкость, прочность, ползучесть); физическим свойствам (электропроводность, теплопроводность, магнитная восприимчивость и вязкость, отражательная способность, прозрачность); химическим свойствам (коррозионная стойкость, растворимость и т. п.); технологическим свойствам (паяемость, свариваемость, полируемость).[8, С.35]

Кремнийорганические жидкости можно использовать и для предохранения металлических изделий от коррозии. Необходимо, однако, отметить, что для получения гидрофобной пленки, химически связанной с металлической поверхностью (сталь, медь и др.), до обработки кремнийорганическими соединениями требуется создать на металле подложку, которая была бы способна химически фиксировать гидрофобную пленку и в то же время прочно связывалась бы с металлом. В частности, стальную поверхность можно подготовить для гидрофобизации путем фосфатирования, т. е. создания на ней фосфатной пленки, обладающей чрезвычайно высоким сцеплением с металлом. Фосфатированную поверхность потом обрабатывают парами или растворами алкилхлорсиланов (или алкиламиносиланов), а затем нагревают изделие для закрепления пленки и полного удаления образовавшегося хлористого водорода. После гидрофобизации коррозионная стойкость фосфатированных металлических деталей повышается примерно в 25 раз.[5, С.356]

Естественно, что пониженная прочность связи в слоях покрышки не могла не отразиться на показателе стендовой ходимости. Средняя ходимость шин 260-508Р мод. ИН-142Б с брекером из металлокорда бельгийского производства составила 3350 км, а в случае использования металлокорда орловского производства только 335 км. Таким образом, опыт длительного использования на объединении ОАО "Нижнекамскшина" металлокордов российского и зарубежного производства позволяет нам сделать следующие рекомендации отечественной метизной промышленности, выполнение которых позволит шинникам резко улучшить качество выпускаемых шин: улучшить структуру катанки за счет исключения микротрещин и твердых неметаллических включений; улучшить качество латунного покрытия за счет стабильности толщины и химсостава, сплошности латунного покрытия, снижения содержания на поверхности смазки; снять остаточное кручение корда; уменьшить разброс метража на катушках; исключить наличие нелатунированных участков; улучшить качество упаковки металлокорда и сделать ее одноразовой; для комплексной оценки металлокорда разработать и внести в его характеристику такие показатели, как "усталостная прочность при изгибе", "коррозионная стойкость металлокорда", "сплошность латунного покрытия"; для облегчения проникновения резиновой смеси между стренгами стального каната увеличить шаг свивки металлокорда на 15-20 %.[7, С.318]

Таблица 3.12. Коррозионная стойкость отвержденных композиций ХПЭ в агрессивных средах при 60 °С [56][6, С.177]

Химическая стойкость пленок из ИСТ-16 оказалась выше, чем ДСТ-30 (табл. IV. 15), так же как и коррозионная стойкость [70].[9, С.179]

Изучена электропроводность многих силикатов [1948— 1953], влияние на них воды [1954—1966], их адсорбционная способность [1967—1971], коррозионная стойкость [1972—1975] и многие другие свойства [922, 1109, 1765, 1986, 4333, 4341, 4342, 1976—1996], а также исследованы свойства слюды [1997— 2009] алюмосиликатов и глинистых минералов [248, 2010—2132].[15, С.456]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
2. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
3. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
4. Рагулин В.В. Технология шинного производства Изд.3 1981г, 1981, 263 с.
5. Андрианов К.А. Технология элементоорганических мономеров и полимеров, 1973, 400 с.
6. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
7. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
8. Шалкаускас М.И. Металлизация пластмасс, 1983, 64 с.
9. Воробьёва Г.Я. Химическая стойкость полимерных материалов, 1981, 296 с.
10. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
11. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
12. Гастров Г.N. Конструирование литьевых форм в 130 примерах, 2006, 333 с.
13. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
14. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
15. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
16. Лельчук В.А. Поверхностная обработка пластмасс, 1972, 184 с.

На главную