Кристаллизация полимеров приводит к повышению их модуля упругости, твердости, прочности и других механических характеристик. Многие исследователи пытаются связать это со степенью кристалличности. При этом предполагают, что особенности механических свойств определяются главным образом аморфными участками, а кристаллиты в силовом поле или поворачиваются, или разрушаются. Установлено, что своеобразный характер деформации полимеров связан с фазовым превращением, происходящим в силовом поле, т. е. с процессом рекристаллизации.[4, С.23]
Кристаллизация полимеров протекает по механизму, в основном сходному с механизмом кристаллизации низкомолекулярных веществ. Процесс включает две стадии — образование зародышей кристаллизации (зарождение новой фазы внутри исходной) и рост кристаллов.[6, С.187]
Кристаллизация. Кристаллизация полимеров сопровождается выделением скрытой теплоты. Именно это позволяет использовать метод ДТА для наблюдения за ходом кристаллизации по появлению экзотермического пика (рис. VTI.4) [3]. Из рисунка видно, что tKfтемпературой плавления и температурой начала кристаллизации, как правило, пропорциональна скорости охлаждения. Отсутствие экзотермических пиков на кривых ДТА еще не является доказательством того, что кристаллизация в данной температурной области не происходит, поскольку этот процесс может идти чрезвычайно медленно.[5, С.107]
Кинетика кристаллизации. Кристаллизация полимеров (возникновение координационного и ориентационного дальнего порядка) включает две стадии: образование зародышей кристаллизации (зарождение новой фазы внутри исходной) и собственно рост кристаллической фазы. Кинетика изотермической кристаллизации полимеров приблизительно описывается уравнением Колмогорова - Аврами, выведенным для низкомолекулярных веществ с учетом двухстадийности процесса кристаллизации:[2, С.145]
Термодинамика. Плавление и кристаллизация полимеров представляют собой фазовые переходы первого рода. Этим переходам соответствует скачкообразное изменение первых производных энергии Гиббса (G), в частности энтальпии Н = G — T(dG/dT)P, энтропии S = —(dG/dT)p и объема V = (dG/dP)T, где Р — давление, Т — температура.[6, С.182]
Таким образом, изотермическая кристаллизация полимеров при температурах значительно ниже температуры плавления приводит к образованию неравновесных (метастабильных) кристаллов, средний размер которых вдоль оси макромолекулы зависит от температуры кристаллизации, возрастая с ее повышением. Монокристаллы полимеров, полученные как из растворов, так и из расплавов, неоднородны по строению. Участки макромолекул, находящиеся внутри кристаллов, образуют кристаллическую ре-[6, С.174]
Представления о структуре монокристаллов полимеров, полученных из разбавленных растворов, справедливы и для пластин, получающихся при кристаллизации из расплавов. Некоторое различие наблюдается лишь в их размерах. Это связано с тем, что температуры, при которых кристаллизация полимеров из разбавленных растворов происходит с заметной скоростью, обычно значительно ниже температуры плавления. Температуры кристаллизации из расплава могут быть близки к температуре плавления полимера, а это способствует образованию более толстых пластин. Обычно при кристаллизации из расплава вырастают целые блоки пластин — многослойные кристаллы. Как и монокристаллы, выра-[6, С.173]
Масло- и морозостойкость акрилатов зависит от величины алкильного радикала. При k = 2 наблюдается более высокая удельная плотность энергии когезии и, как следствие, высокая маслостойкость и малая морозостойкость. С увеличением длины алкильного радикала падает маслобензостойкость, повышается морозостойкость, увеличивается липкость и ухудшается обрабатываемость полимеров. При Сд и выше наблюдается кристаллизация полимеров [2]. Замена акрилата на соответствующий мета-крилат приводит к получению более жестких сополимеров, что объясняется вдвое большей удельной плотностью энергии когезии группы СНз — по сравнению с группами —СНЬ— или —СН— [3, гл. III]. В связи с получением полимеров с более высокой температурой стеклования метакрилаты не применяются в качестве основных мономеров для получения акрилатных каучуков, а используются только при получении пластиков. Низшие алкил-акрилаты и метакрилаты представляют большой интерес для синтеза пленкообразующих латексов [4].[1, С.387]
Кристаллизация полимеров обычно сопровождается выделением тепла, что на термограммах выражается экзотермическим пиком в том случае, если скорость кристаллизации больше скоро-[7, С.209]
Кристаллизация полимеров, в отличие от кристаллизации низкомолекулярных веществ, проходит обычно не полностью, и при этом образуются метастабиль-ные кристаллы. При нагревании они плавятся в некотором интервале температур (АГПЛ иногда достигает десятков градусов). На практике верхнюю границу этого интервала принимают за экспериментальную температуру плавления полимеров. Равновесная температура плавления Г°пл обычно ниже экспериментальной Тпл примерно на 5—20 °С. Наблюдаемые значения ТПл и ДГПЛ зависят от химической природы макромолекул, молекулярно-массового распределения, условий кристаллизации. В интервале плавления происходят процессы так называемого «частичного» плавления, связанные с постепенным расплавлением наиболее дефектных граней кристаллитов и постадийным плавлением кристаллитов разных размеров и различной степени дефектности.[15, С.135]
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!! Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.