На главную

Статья по теме: Локальных напряжений

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Если природа разрушенных элементов не изменяется в процессе обработки образца или его испытания на разрушение, то (3 можно полагать постоянным. Концентрация локальных напряжений YO/CTO, которая в данном случае равна отношению модулей Е/Е),, оказывает наибольшее влияние на у- Поэтому из данной теории следует, что увеличение прочности эквивалентно возрастанию жесткости. Это следствие основано на предположении, что элементы действительно разрушаются при критической локальной деформации (кинетический вариант критерия Сен-Венана — максимума деформации). Иное объяснение[1, С.88]

Предыдущие рассмотрения применимы к однородным изотропным материалам, т. е. к аморфным [61, 198, 200] и частично кристаллическим полимерам со слабо развитой микроструктурой [130]. В этих материалах направленность разрушения более или менее определяется полем локальных напряжений. Во всяком случае, судя по морфологии поверхности разрушения, ничего нельзя сказать о ее микроструктуре. Это не исключает существования определенной глобулярной микроструктуры (гл. 2, разд. 2.1.3), которую можно выявить путем ионного травления [132, 208]. Однако для полимеров с явно выраженной микроструктурой, обусловленной присутствием кристаллитов с вытянутыми цепями и сферолитов, отчетливо выявляются особенности поверхности разрушения. В таких полимерах сопротивление материала распространению трещины сильно зависит от ориентации плоскости разрушения относительно элемента структуры.[1, С.393]

Особенности макроскопической картины поверхности разрушения, показанной на рис. 9.16, могут быть обусловлены распространением трещины, вызывающей расщепление материала, с высокой скоростью перпендикулярно направлению действия локального растягивающего напряжения. Поле локальных напряжений испытывает сильное влияние упругих волн, возбуждаемых на более ранних стадиях развития трещины, и процесса возникновения вторичных трещин. Поверхность разрушения получена путем изгиба надрезанного образца ПЭ при температуре жидкого азота [130]. Поверхность локально гладкая, но в то же время содержит ступеньки и складки. Пересечение волновых фронтов и плоскостей трещин под различными (например, прямыми) углами вызывает образование любопытных кар-[1, С.390]

Рассмотрим конкретный практический пример ламинарного смешения. Жидкий компонент вводят в смеситель, содержащий расплав полимера в форме «капель» микроскопических размеров. Мы утверждаем, что то, что произойдет с «каплями» в потоке жидкости в начальной стадии смешения, не зависит от смешиваемости компонентов. Это объясняется тем, что при быстром растворении образуется тонкий (в лучшем случае) пограничный слой. Постепенно капли деформируются, подвергаясь воздействию локальных напряжений. Поле напряжений неоднородно, поскольку компоненты смеси имеют раз* личные реологические свойства (как вязкость, так и эластичность). Влияние поверхностного натяжения несущественно (соответственно несущественно и наличие или отсутствие четких границ раздела), Вязкие силы превышают поверхностное натяжение По мере деформации капель и увеличения площади поверхности раздела степень смешиваемости двух компонентов начинает играть все возрастающую роль. Для смешиваемых систем внутренняя диффузия способствует достижению смешения на молекулярном уровне, а в случае несмешиваемых систем — вводимый компонент дробится на мелкие домены. Эти домены вследствие вязкого течения и под воздействием сил поверхностного натяжения достигают состояния, характеризуемого постоянной величиной деформации. Таким образом, для несмешиваемых систем смешение начинается по механизму экстенсивного смешения и постепенно переходит в гомогенизацию. Морфология доменов, образующихся как в смесях, так и в сополимерах, является предметом интенсивных исследований [19],[3, С.388]

Выше было показано, что при низкой температуре пластическое деформирование каучуков вызывает разрыв большого числа сегментов цепей. Это свидетельствует о том, что локальные осевые напряжения превышают прочность этих сегментов. Еще раньше было показано, что напряжения, требуемые для разрыва связи, более чем на два порядка превышают по величине напряжения, требуемые для макроскопической деформации каучукоподобных образцов. Поэтому образование свободных радикалов указывает на высокую неоднородность распределения локальных напряжений. Интенсивность образования радикалов соответствует числу N сегментов, напряжения в которых превышают значения их прочности; поэтому N будет зависеть от всех параметров, повышающих локальные напряжения, типа плотности сшивки или содержания упрочняющих наполнителей, которые снижают прочность связи, подобно присутствию гете-рогрупп в основной цепи, или влияют на число получаемых радикалов через реакции последних.[1, С.216]

Таким образом, причиной противоположных точек Зрения на природу связей, определяющих способность полимеров противостоять механическому разрушению, является ограничение экспериментальных исследований примерами, относящимися только к одному из реализуемых на практике механизмов, и распростра-, нение полученных результатов на все возможные в процессе эксплуатации изделий из полимеров случаи. Это в сущности ненормальное положение в значительной мере обусловлено тем, что кинетическими уравнениями (V. Юа) и (V.106) удобнее оперировать тогда, когда параметры этих уравнений не изменяются в зависимости от скорости, продолжительности процесса и температуры. Все эти условия соблюдаются только тогда, когда полимерное тело в значительной мере утрачивает способность изменять конформационный набор макромолекул, т. е. когда они предельно ориентированы или в силу других причин утратили гибкость. Другой причиной является трудность экспериментальной оценки локальных напряжений, приходящихся на «перегруженную» связь в полимере. Если имеют дело с неориентированным эластомером, то уровень напряжения на этих связях сравнительно мало отличается от среднего уровня напряженности связей в теле. Поэтому все приводимые результаты исследования кинетики накопления разрывов межатомных связей, кинетики образования и роста субмикроскопических и макроскопических трещин были получены на предварительно ориентированных невысокоэластических полимерах.[6, С.285]

Вычисление поправок к оценкам (3.58) — (3.59) на основании более точных предположений о характере распределения истинных (локальных) напряжений п деформаций представляет собой трудную задачу, решения которой для различных типов упругой симметрии (в среднем) собраны в многочисленных книгах [20, 21, 17] и здесь рассмотрены не будут, поскольку главная цель настоящей книги (в отношении методов решения) — изложение численных методов. Отметим здесь только, что эффективные модули определяют также приравниванием энергий истинной и[2, С.122]

Рис. 11.12. Методы снятия локальных напряжений в прижимной подушке при штамповке металлов:[5, С.247]

При конструировании не следует забывать о необходимости устройств для снятия локальных напряжений в блоке. Это можно сделать двумя способами (рис. 11.12): а) создав небольшой зазор между подушкой и стенками контейнера, или б) с помощью небольшой полости в центре дна последнего. И в том, и в другом случае[5, С.247]

Анализируя эту картину, Ферри отмечает [45 ], что большое значение для релаксации локальных напряжений имеют кон-формационные перегруппировки. Поэтому разрушающее напряжение и удлинение при разрыве — суть функции скорости общего удлинения и температуры структуры.[6, С.249]

Предположение о том, что высокая прочность исследуемых вул-•канизатов связана с возможностью протекания обменных реакций между узлами сетки и диссипацией локальных напряжений в ходе этой перестройки [62], было отвергнуто после того, как выяснилось, что межмолекулярные поперечные солевые связи в вулканизатах практически не образуются. Кроме того, как отметили Хелпин и Бики [1], при перестройке сетки в растянутых образцах должны фиксироваться растянутые цепи, что обусловливает большие остаточные деформации вулканизатов. В действительности же остаточные деформации при разрушении металлоксидных вулканизатов яе1велики.[7, С.161]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Wright P.N. Solid polyurethane elastomers, 1973, 304 с.
6. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
7. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
8. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
9. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
10. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
11. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.

На главную