На главную

Статья по теме: Предварительно ориентированных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Рис. 7.23. Деформирование и характер разрушения предварительно ориентированных образцов полиизопрена и полихлоропрена [31].[1, С.213]

Хорошо известно, что прочность неориентированных и предварительно ориентированных полимеров различна [233; 290, с. 202, 815; 480, с. 1492; 481, с. 459]. Так [482, с. 257], прочность высокоориентированного поливинилацетата (вытянутого при 90° С в 250 — 300 раз) в области молекулярных масс 20 тыс. — 200 тыс. линейно растет с увеличением молекулярной массы.[2, С.177]

Результаты расчета сеток, образованных из неупорядоченных и предварительно ориентированных цепей, приведены в табл. 6. При расчете была использована величина АЯМ= = 1050 кал/моль, а параметру k приписывали значения 1 и 3. Если сравнение делается при одинаковых значениях с, то наблюдаемые различия в температурах плавления хорошо согласуются с теоретически ожидаемыми для всей области концентрации сшивок, в которой могут быть получены кристаллизующиеся сетки. Очень хорошее согласие получается для концентрации сшивок меньше 1%. Небольшие различия между расчетными и измеренными величинами Т"Л при высоких с могут быть отнесены за счет очень большого понижения температуры плавления, наблюдаемого в этой области концентраций для сеток, образованных из статистических цепей,[3, С.161]

Можно сделать вывод, что ориентация при растяжении способствует кристаллизации, а последняя в предварительно ориентированных полимерах уменьшает внутреннее напряжение. Каким бы ни было напряжение, испытываемое аморфными цепями, проекция длины беспорядочно свернутой молекулы на ось ориентации значительно меньше ее длины в кристаллическом состоянии. Естественно, поэтому, что плавление ориентированной структуры вызывает сокращение, а кристаллизация — удлинение **. Изменения размеров и напряжения могут быть, таким образом, отнесены за счет фазового перехода кристалл — жидкость.[3, С.171]

На примерах ПА-6 и ПА-66 вначале будет рассмотрено феноменологическое представление образования свободных радикалов в предварительно ориентированных нитях. При испытаниях с постоянной скоростью нагружения в диапазоне значений деформаций от 8 % Д° деформации разрыва образца (16 — 25%), которые соответствуют напряжениям 500 — 900 МПа (рис. 7.1), получен очень сильный рост концентрации довольно[1, С.189]

Интенсивность рассеянного излучения определяется концентрацией рассеивающих центров, их размером и формой. В деформированных и предварительно ориентированных полимерах обнаружено скопление очень мелких дефектов, возникающих под действием механической нагрузки. Эти дефекты имеют форму дисков, ориентированных в поле механических сил перпендикулярно разрушающим усилиям. При однородном растяжении эти микродефекты образуют в полимере систему параллельно расположенных микродисков, каждый из которых располагается перпендикулярно оси растяжения. Анализ зависимостей скорости зарождения микродефектов от уровня растягивающего напряжения, времени и температуры позволил сделать вывод о том [36], что эти дефекты являются зародышем тех дефектов, рост которых приводит к разрыву образца.[2, С.242]

Это означает, что для критически нагруженного сегмента цепи ПА-6 с отношением L/L0=1,1 приращение температуры на 10 К может быть скомпенсировано уменьшением деформации лишь на .0,23%- Результат данной оценки довольно хорошо согласуется со средним значением 0,3%/10К, полученным в экспериментах Джонсона и Клинкенберга [11]. Для предварительно ориентированных волокон ПА-6 они получили, что при —60°С и деформации образца 14,6 % образуется то же самое число свободных радикалов, что и при деформации 12,2 % при +20°С.[1, С.203]

При анализе сформулированных выше аспектов проблемы прочности полимеров важно учитывать изменение их структуры в процессе нагружения. Заключительный этап разрушения происходит в системе, существенно отличающейся структурными характеристиками от исходной [299, с. 92]. Поэтому при изменении температуры и скорости нагружения (или времени действия силы) возможен переход от одного механизма разрушения к другому [300, с. 197]. Эта точка зрения [143, с. 218] в дальнейшем нашла подтверждение в экспериментах ряда ученых, например в работах Вильямса, Девриза, Ройланса [301, с. 197; 302, с. 127—135]. Следует заметить, что на практике часто происходит разрушение предварительно ориентированных в направлении нагружения волокон или пленок. Система такого типа практически лишена способности изменять конформационный набор макромолекул в процессе разрушения. В таких системах при достаточно большой молекулярной массе противодействовать разрушению будут преимущественно силы главных химических валентностей.[2, С.235]

Таким образом, причиной противоположных точек Зрения на природу связей, определяющих способность полимеров противостоять механическому разрушению, является ограничение экспериментальных исследований примерами, относящимися только к одному из реализуемых на практике механизмов, и распростра-, нение полученных результатов на все возможные в процессе эксплуатации изделий из полимеров случаи. Это в сущности ненормальное положение в значительной мере обусловлено тем, что кинетическими уравнениями (V. Юа) и (V.106) удобнее оперировать тогда, когда параметры этих уравнений не изменяются в зависимости от скорости, продолжительности процесса и температуры. Все эти условия соблюдаются только тогда, когда полимерное тело в значительной мере утрачивает способность изменять конформационный набор макромолекул, т. е. когда они предельно ориентированы или в силу других причин утратили гибкость. Другой причиной является трудность экспериментальной оценки локальных напряжений, приходящихся на «перегруженную» связь в полимере. Если имеют дело с неориентированным эластомером, то уровень напряжения на этих связях сравнительно мало отличается от среднего уровня напряженности связей в теле. Поэтому все приводимые результаты исследования кинетики накопления разрывов межатомных связей, кинетики образования и роста субмикроскопических и макроскопических трещин были получены на предварительно ориентированных невысокоэластических полимерах.[2, С.285]

бодных радикалов. Неориентированные образцы каучука (замороженные в релаксационном состоянии) подвергаются такому же хрупкому разрушению, как и в температурной области III (90—130 К). Однако образцы, предварительно ориентированные путем растяжения на 100—200 %, очевидно, обладают свойством локального деформационного упрочнения. О природе этого эффекта можно лишь выдвигать гипотезы, и, вероятно, она связана с образованием в предварительно ориентированных эластомерах частично-ориентированных микрофибрилл. В результате локального деформационного упрочнения микротрещины и оставшиеся дефекты образуют систему взаимосвязанных микропустот, а вытянутые фибриллы формируют большие отчетливо видимые полосы. Окружающие газы поглощаются вновь образованными поверхностями пустот. Поскольку микрофибриллы достаточно прочны, чтобы выдержать нагрузку, передаваемую на них, то деформированный образец не будет разрушаться, а все больше и больше дефектов будет превращаться в трещины серебра и полосы. Наибольшее число полос образуется при средних скоростях растяжения (0,01 с~' для полихлоропрена). Большая локальная деформация (более 100%) во всем объеме образца и сильное межмолекулярное притяжение между различными сегментами цепей вызывают сильное возбуждение вдоль оси цепи и разрыв тех ее сегментов, которые играют роль проходных молекул. Согласно упомянутым результатам, концентрация спинов при разрушении эластомеров в температурной области III сопоставима с их концентрацией, полученной для ПА-6. При сильной предварительной ориентации до 300 % (в полихлоропрене) наблюдается пластическое деформирование материала и образование в нем свободных радикалов [31]. Деформация макроскопически однородна. Не обнаружено ни полос, ни трещин серебра, указывающих, что данное деформационное упрочнение более эффективно, чем при меньшей степени предварительной ориентации. Очевидно, рост микропустот прекращается, затем они схлопываются с образованием трещин серебра. Отсутствие сильного поглощения газа и ценообразования при последующем нагреве, а также различия полученных ЭПР-спектров подтверждают данную точку зрения [31].[1, С.215]

успешно исследовать образование во времени свободных радикалов, были выполнены на высокоориентированных частично-кристаллических волокнах типа ПА-6 и ПА-66, полиоксамида, полиэтилена, полиэтилентерефталата или натурального шелка и на предварительно ориентированных каучуках (натуральный[1, С.179]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
3. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.

На главную