Диблочный сополимер (содержащий около 40% полистирола), обладающий очень слабой надмолекулярной организацией (см. рис. 1, я), отжигали до тех пор, пока наружное кольцо, показанное на рис. 1, б и обусловленное фактором формы частиц, не становилось четко выраженным. Продолжительность отжига, необходимая для достижения такого уровня агрегации, в сильной степени зависит от температуры:[7, С.189]
В данной главе приведен обзор общих представлений различных теорий разрушения, не имеющих явной связи с характерными свойствами молекулярных цепей, их конфигурационной и надмолекулярной организацией, тепловой и механической перестройкой. Это относится к классическим критериям ослабления материала и общим механическим моделям сплошных сред. Теории кинетических процессов разрушения учитывают вязкоупругое поведениеполимерного материала, но вывод критериев разрушения не связан с подробным морфологическим анализом. Эти основополагающие теории тем не менее неоценимы для объяснения статистических неморфологических сторон процесса разрушения или его характеристики с точки зрения механики сплошных сред.[2, С.59]
Комплекс структурно-механических свойств полимерных материалов (волокон, пленок и др.) определяется: средней степенью полимеризации; полидисперсностью; химическим строением полимеров; однородностью химического состава; надмолекулярной организацией и морфологией полимеров.[1, С.13]
Структура химических волокон, пленок и других полимерных материалов предопределяется как комплексом свойств макромолекул соответствующих волокнообразующих высокомолекулярных соединений, так и способами их взаимной упаковки в полимерном теле (надмолекулярной организацией полимерного субстрата, морфологией полимерного материала). Как отмечалось выше, фундаментальным свойством, отличающим полимеры от низкомолекулярных соединений, является гибкость макромолекул.[1, С.89]
Химическое строение молекул определяет значение температур размягчения и плавления, скорость перехода из кристаллического состояния в аморфное. Полиэтилен высокой плотности размягчается под нагрузкой при 70-75 °С и расплавляется при 128 "С. ПЭНП, имеющий меньшую степень кристалличности, размягчается при 65 °С и расплавляется при 105-110 °С (рис. 61, кривые 2, 3). Таким образом, для ПЭНП интервал ДГ = Гпл - Гр составляет 40-45 °С, а для полимера того же химического строения, но с более развитой надмолекулярной организацией Гпл - Гр равно 53—58 °С.[5, С.128]
Безотносительно к детальной надмолекулярной организации полимеров их теплостойкость (т. е. температурный предел, в котором сохраняются эксплуатационные свойства) определяется в основном температурами стеклования и кристаллизации. В тех случаях, когда полимер работает главным образом в ориентированном и кристаллическом состояниях (например, волокна), доминирующей характеристикой, определяющей теплостойкость, становится температура плавления, в то время как общий комплекс механических свойств непосредственно определяется надмолекулярной организацией.[8, С.5]
В последние годы большое распространение получила концепция [1], которая заключается в том, что основные физические свойства полимеров (в том числе и механические) зависят не только от их химического строения, но и от надмолекулярной организации. При этом полагают, что определяющее влияние на физические свойства полимеров оказывает их химическое строение, однако это влияние осуществляется через физическую структуру. Эта концепция наиболее четко была сформулирована в работах В. А. Кар-гина и его учеников и получила широкое развитие. Представление о влиянии надмолекулярной организации на механические свойства полимеров лежит в основе так называемой «структурной механики полимеров». Возникла довольно парадоксальная ситуация: постепенно многие сторонники этой концепции стали считать, что основные физические свойства полимеров определяются только их надмолекулярной организацией. При этом молчаливо предполагалось, что физические (и в первую очередь механические) свойства полимеров практически не зависят (или зависят слабо) от химического строения. В результате среди работ, посвященных исследованию структуры полимеров, оказалось немало ошибочных или таких, в которых экспериментальные факты неправильно интерпретировались. Сведения о структуре полимеров, которы-[6, С.33]
В отличие от этого М. в разбавленных р-рах, когда привитая соиолимеризация может затрагивать каждую отдельную макромолекулу, приводит к получению нскристаллизующегося полимера с надмолекулярной организацией, характерной для аморфных высокомолекулярных соединений.[9, С.137]
В отличие от этого М. в разбавленных р-рах, когда привитая сополимеризация может затрагивать каждую отдельную макромолекулу, приводит к получению некристаллизующегося полимера с надмолекулярной организацией, характерной для аморфных высокомолекулярных соединений.[11, С.135]
Применение термодинамич. теории к Ф. п. в полимерных системах сопряжено с рядом трудностей. Первая из них обусловлена тем, что полимерные системы могут существовать в огромном числе устойчивых состояний с различной надмолекулярной организацией, определяющейся не только условиями, в к-рых они на-, ходятся, но и способом приведения системы к данным условиям (см. Надмолекулярная структура, Структура). Термодинамически эти состояния мотастабильны, но отвечающие им относительные минимумы термодинамич. потенциала таковы, что самопроизвольный выход из них в результате тепловых флуктуации невозможен, а переходы в другие фазовые состояния, вызываемые, напр., изменением темп-ры, сопровождаются скачкообразным изменением структурных характеристик и поглощением или выделением тепла. Поэтому такие явления могут рассматриваться как Ф. п. с точкой перехода, зависящей от способа возвращения системы в исходное состояние. В отличие от истинных Ф. п. эти переходы могут оказаться необратимыми. Вторая трудность, также связанная с особенностью надмолекулярной организации полимеров, заключается в том, что элементы структуры обладают различной стабильностью, и наблюдаемые Ф. п. представляют собой наложение превращений отдельных элементов, происходящих в несколько различающихся условиях. Поэтому точное значение параметра, при к-ром происходит Ф. п., заменяется нек-рым конечным интервалом.[10, С.352]
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!! Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.