На главную

Статья по теме: Образования зародышей

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Область II усталостного разрушения характеризуется тем, что период образования зародышей трещин серебра предшествует их росту и появлению медленно, а затем катастрофически быстро растущей трещины. Данный тип усталостного разрушения наблюдается при значениях напряжения, чуть меньших напряжения о,-, при котором 'Непосредственно начинается рост трещины серебра. Зависимость NP от а значительно более слабая. Это приводит к тому, что при меньших значениях напряжения происходит задержка начала роста трещины серебра, а также понижается скорость медленного роста простой трещины. По-видимому, наклон кривой (^1,4 МПа на 1 цикл NF) будет характерен для многих полимеров [142, 153].[2, С.294]

Напряжение вынужденной эластичности и напряжение образования трещины серебра зависят от температуры, но зависимость напряжения образования трещины серебра более слабая. Это свидетельствует о том, что при инициировании трещины серебра необходима дополнительная поверхностная энергия образования зародышей пустот[2, С.371]

В отличие от стеклования, которое в пределах доступного для наблюдения времени не является фазовым переходом, кристаллизация представляет собой фазовый переход I рода, признаками которого являются скачкообразные изменения удельного объема, энтальпии и энтропии системы. Термодинамической константой этого перехода является равновесная температура плавления кристаллов Тпл- Она представляет собой верхний температурный предел, выше которого существование кристаллической фазы невозможно. Кристаллизация развивается при Т < Гпл и состоит из двух элементарных процессов — образования зародышей, а также роста и формирования кристаллитов. Первичными кристаллическими образованиями в нерастянутых полимерах являются ламели, представляющие сложенные на себя молекулярные цепи. Из них затем формируются вторичные поликристаллические образования — сферолиты, дендриты и др.[1, С.46]

Камбур и др. [125* 128]. Камбур использовал разные жидкости, вызывающие набухание полимеров со значениями параметров растворимости 6s 5,34—19,2 кал1/» см-8/». Он определял равно мерную растворимость Sv как объем жидкости, поглощенной; единицей объема полимера, для ПС, поли(2,6-диметил-1,4-фени-лен оксида) и ПСУ. Установлено, что набухание поли(2,6-ди-метил-1,4-феНилен оксида) во всем наборе органических жидкостей имеет обратную корреляцию от величины |6s — бпФо! Следовательно, сопротивление образованию трещины серебра коррелирует с |8S — 6пф0|. Сопротивление образованию таких трещин в ПС и ПСУ не столь хорошо коррелировало с параметрами растворимости. Однако для всех трех полимеров равновесная растворимость Sv оказалась подходящим критерием взаимодействия системы полимер—растворитель. Для двух групп данных, относящихся к полистиролу, получены универсальные зависимости для Тс и деформации начала роста трещины серебра е» при использовании Sv в качестве независимого параметра. Одна группа данных была получена на образцах, предварительно пластифицированных в различной степени орто-дихлорбензолом; другая группа — на «сухих» образцах, находившихся в контакте с растворяющим агентом (в,-), или на набухших пленках (Т0). На основании полученных результатов Камбур пришел к выводу, что наличие или отсутствие границы раздела жидкость—полимер несущественно для эффективности образования трещин серебра в присутствии агента, способствующего образованию трещин. Таким образом, этот агент действует в объеме полимерной матрицы. Увеличивая подвижность цепи (снижая Тс), он способствует протеканию первой и второй стадий процесса начала роста трещин: образования зародышей и устойчивого роста трещины серебра. Это вызывает уменьшение а( и е,- в хрупких полимерах, таких, как ПС. Создание благоприятных условий для образования зародышей и устойчивого роста трещин серебра приводит к образованию трещин даже в таких пластичных материалах, как поли(2,6-ди-метил-1,4-фенилен оксид), ПСУ, ПВХ или ПК.[2, С.387]

Скорость образования зародышей кристаллизации (wa) проходит через максимум при температуре, лежащей между температу-[5, С.188]

Рис. 9.15. Модель образования зародышей пустот и фибрилл в ПММА [11].[2, С.378]

Рис. VI. 21. Зависимость скоростей образования зародышей кристаллизации (/) и роста кристаллов (2) от температуры.[5, С.188]

Л — область упругой деформации; В — область образования зародышей пустот и фибрилл;[2, С.376]

Затвердевание цилиндрических выдувных изделий происходит при преимущественной молекулярной ориентации в 0-направлении. Если ориентация слишком велика, то можно ожидать образования зародышей кристаллизации в z-направлении. В толстостенных выдувных изделиях из кристаллизующихся полимеров ориентация может быть обнаружена только в пристенном слое.[3, С.583]

Задание. Определить индукционный период кристаллизации; сопоставить значения k для двух температур кристаллизации, различающихся на Г; наблюдается ли такое изменение констайты скорости при кристаллизации низкомолекулярных веществ? Описать морфологию образующихся структур, приняв механизм образования зародышей кристаллизации а) гомогенный, б) гетерогенный.[5, С.198]

Состояния, которым отвечают участки А — В и С — А, являются метаста-бильными. Существование их связано с тем, что переход из одного состояния в другое может проходить через промежуточные, обладающие большей гиббсовой энергией, чем исходное и конечное состояния. В случае перехода газ — жидкость таковыми являются состояния, в которых в жидкости образуются малые зародыши газа (пузырьки насыщенного пара) или, соответственно, в газе — малые капельки жидкости. При каждой температуре существует критический размер зародышей новой фазы, при котором они превращаются из нестабильных в стабильные и начинают быстро расти, вызывая фазовый переход во всей системе. Если условий для образования зародышей критического размера нет, метастабильные состояния могут существовать как угодно долго.[8, С.27]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
6. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
7. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
8. Бартенев Г.М. Физика полимеров, 1990, 433 с.
9. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
10. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
11. Серков А.Т. Вискозные волокна, 1980, 295 с.
12. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
13. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
14. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
15. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
16. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
17. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
18. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
19. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
20. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
21. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
22. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
23. Привалко В.П. Справочник по физической химии полимеров том 2, 1984, 330 с.
24. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
25. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
26. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
27. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
28. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
29. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
30. Липатов Ю.С. Справочник по химии полимеров, 1971, 536 с.
31. Жен П.N. Идеи скейлинга в физике полимеров, 1982, 368 с.
32. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
33. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
34. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.
35. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.
36. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную