На главную

Статья по теме: Усталостного разрушения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Область II усталостного разрушения характеризуется тем, что период образования зародышей трещин серебра предшествует их росту и появлению медленно, а затем катастрофически быстро растущей трещины. Данный тип усталостного разрушения наблюдается при значениях напряжения, чуть меньших напряжения о,-, при котором 'Непосредственно начинается рост трещины серебра. Зависимость NP от а значительно более слабая. Это приводит к тому, что при меньших значениях напряжения происходит задержка начала роста трещины серебра, а также понижается скорость медленного роста простой трещины. По-видимому, наклон кривой (^1,4 МПа на 1 цикл NF) будет характерен для многих полимеров [142, 153].[1, С.294]

Используя индикатор усталости, отрегулированный по нагрузке, Банселл и Хирль [77] еще раньше получили характерную морфологическую картину усталостного разрушения волокна ПА-66. Для реализации данного усталостного механизма необходимо исследование с изменяемыми до нуля циклическими нагрузками. В таких условиях волокно ослабляется при максимальной нагрузке, составляющей лишь 60 — 70 % исходной[1, С.262]

Наличие пластификаторов и модификаторов, а также повышение температуры способствуют уменьшению концентрации напряжений в вершинах трещин [12, с. 72—75], что приводит к замедлению процессов усталостного разрушения соединений. Однако при этом может изменяться статическая прочность, экстремально зависящая от концентрации пластификатора (рис. 5.2). Повышение содержания пластификатора выше оптимального приводит к снижению когезионной прочности [33].[4, С.112]

Как и следует ожидать, рост обычной трещины при постоянной или нарастающей нагрузке и развитие усталостной трещины имеют довольно много общего. Так, в обоих случаях на поверхностях статического и усталостного разрушения выявляется область медленного роста и быстрого распространения трещины. Очень хорошо согласуются между собой коэффициенты интенсивности напряжений, полученные в обоих случаях при переходе от устойчивого роста трещины к неустойчивому ее росту [218]. Большинство авторов выражают скорость устойчивого роста усталостной трещины с помощью эмпирической зависимости:[1, С.411]

Со временем было установлено, что механокрекинг — разрыв полимерных цепей — не столь уж редкое явление; он протекает при не очень жестких режимах механического воздействия и даже при сравнительно небольших деформациях полимеров в процессе их испытания, производства, переработки или эксплуатации. Поэтому механокрекинг стал рассматриваться как первопричина усталостного разрушения полимеров и связанной с ним долговечности изделий.[6, С.8]

По-видимому, .частотная зависимость скорости распутывания молекулярных клубков в утомленных фибриллах частично определяет влияние частоты на скорость роста трещины. Кроме того, в деформированном материале, содержащем трещины серебра, происходит гистерезисный нагрев. Оба эффекта суммируются, приводя к явной частотной зависимости процесса роста трещины в области А для различных материалов, таких, как ПК и ПММА [219, 220] и поли(2,6-диметил-1,4-фенилен оксид), ПВХ, ПА-66, ПК, ПВДФ, ПСУ [220]. Как отметили Скибо и др. [220], чувствительность явления усталостного разрушения к частоте изменяется в зависимости от температуры. Она достигает максимума при такой температуре, когда внешняя частота (утомления) соответствует частоте внутренних сегментальных скачков (процесс р-релаксации).[1, С.413]

Влияние частоты деформации определяется изотермнчпостью процесса. Повышение частоты в неизотермических условиях (например, при многократных деформациях массивных изделий, изготовленных из материала с плохой теплопроводностью) приводит к снижению числа циклов до разрушения ввиду высокого теплообразования в сис!еме и интенсивного протекания реакций окисления. Если же деформирование полимера происходит в изотермических условиях (например, тонкостенных издсчий с хорошей теплопроводностью) при наличии агрессивного реагента (например, озона), то скорость усталостного разрушения Ми определяется зависимостью[3, С.340]

Здесь D — относительная деформация выступов (неровностей поверхности); Ятах — максимальная высота выступов, мкм; р — параметр кривой опорной поверхности; d — диаметр пятна касания; АИЗ — постоянная, зависящая от вида износа, и п — число циклов, приводящих к усталостному разрушению трущихся поверхностей. Когда Л'из'С!, а пЗ>1, преобладает износ, связанный с микрорезанием. При /(из и-cl износ практически полностью определяется усталостным механизмом. Если же 0,1результате процессов микрорезания и усталостного разрушения, примерно одинаковы (следовательно, эквивалентный износ определяется обоими этими механизмами). В общем случае можно считать, что при шероховатых поверхностях твердых полимеров преобладает их абразивный износ, а при гладких поверхностях — усталостный износ.[2, С.383]

Интересная феноменологическая модель усталостного разрушения полимеров, учитывающая накопление слабых мест, предложена Бокшиц-ким [289, с. 654—667].[7, С.79]

Качественное различие между тепловым и механич. видами усталостного разрушения — в различной роли частоты пагружения и темп-ры. При механич. разрушении темп-pa и частота влияют на выносливость противоположным образом, в соответствии с суперпозиции принципом температурно-временным, а при тепловом разрушении их влияние эквивалентно.[9, С.351]

Качественное различие между тепловым и механич. видами усталостного разрушения — в различной роли частоты нагружения и темп-ры. При механич. разрушении темп-pa и частота влияют на выносливость противоположным образом, в соответствии с суперпозиции принципом температурно-временным, а при тепловом разрушении их влияние эквивалентно.[12, С.351]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
4. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
5. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
6. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
7. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
8. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
9. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
10. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
11. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
12. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
13. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.

На главную