На главную

Статья по теме: Образование вторичных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Межмолекулярное и химическое взаимодействие, а также образование вторичных саже-каучуковых структур в резиновой смеси могут и должны регулироваться уже при смешении. Действительно, когез^онная прочность (рис. 2.3) смесей при введении в них технического углерода возрастает в некоторых случаях в 8— 10 раз [7],[3, С.70]

Пластизоли из ПВХ типа II! имеют склонность к дилатансии, причем тем большую, чем выше степень термообработки в процессе сушки При сдвиге происходит сцепление между осколками агломератов и образование вторичных коагуляционных структур. Из сравнение кривых 3 и 4 видно также, что ПВХ марки "Совинит" дает менее вязкие пасты, с характером течения, более близким к ньютоновскому Причина этого заключается в том, что исходная дисперсия (латекс ПВХ "Совинит" имеет более узкое распределение по размерам глобу." по сравнению с ПВХ Е-70 ПС: максимальный размер частиц первого не превышает 1/мкм, тогда как у второго максимальный размер глобу." достигает 5 мкм.[4, С.144]

Наличие сильно разветвленных вторичных структур для полиакрилатов натрия, цезия и четвертичных аммониевых оснований следует ожидать, если при рассмотрении конфигурационного состояния гибких полиионов в растворе исходить из соотношения между термическими силами, стремящимися свернуть цепочку в клубок, и электростатическими силами между заряженными звеньями цепи, приводящими к увеличению ее жесткости. И действительно, когда мы имеем дело со слабым полимерным электролитом (как было показано выше для случая полиакриловой кислоты в водном растворе), молекулы которого ионизированы только частично, полиион будет обладать формой компактного и более или менее диффузного клубка, так как внутримолекулярные электростатические силы отталкивания невелики и недостаточны для выпрямления молекулы, способствуя только расширению клубка. При введении в цепочку слабого полиэлектролита катионов, способствующих увеличению степени диссоциации ионогенных групп, а следовательно и возрастанию эффективного заряда цепи, следует ожидать возрастания внутримолекулярных электростатических сил отталкивания, а следовательно и жесткости цепи. Когда эти силы начинают превосходить термические, молекулярная цепочка начинает выпрямляться, приобретая форму вытянутой жесткой палочки. Следовательно, в растворах полиакрилатов натрия, цезия и четвертичных аммониевых оснований молекулярные цепочки будут предельно распрямлены. И далее, предельно асимметричные молекулярные цепочки агрегируют параллельным соединением друг с другом с образованием фибрилл, переплетение которых и дает нам сетки — вторичные структуры. Отдельные фибриллы имеют величины поперечных размеров, колеблющиеся в пределах 40— 120 А. Исходя из значения расстояний между компактно уложенными молекулярными цепочками (3 А) и величин поперечных размеров самой молекулярной цепочки (4,5 А), для случая предельной асимметрии, когда молекулы имеют форму вытянутой палочки, мы можем считать, что фибриллы составлены из 5—16 молекулярных цепочек, соединенных друг с другом в пачки. Следует отметить то обстоятельство, что и в сильно разбавленных растворах, где не имеет места образование вторичных структур из-за малой концентрации вещества, не происходит распад пачек; они продолжают существовать, приобретая из-за присущей им гибкости сильно изогнутую форму.[6, С.115]

Первичные агрегаты могут образовывать вторичные более крупные агрегаты или вторичную структуру сажи, при этом связь между первичными агрегатами обеспечивается силами физического взаимодействия; прочность этой связи может быть различная. Так, например, чем меньше размер сажевых частиц и первичных агрегатов, тем прочнее связи, образующие вторичную структуру сажи, что наблюдается, например, у канальной сажи. Образование вторичных структур может происходить и в резиновых смесях, и в вулканизатах.[1, С.159]

Микрофотография чистой полиакриловой кислоты показана на рис. 1, а. На снимке видны отдельные изолированные глобулы сферической формы и всегда симметричные. Размер отдельных глобул находится в пределах 100— 150 А. Исходя из молекулярного веса исследуемой полиакриловой кислоты, были рассчитаны размеры молекул, в предположении, что цепочка представляет собой свернутый клубок и плотность клубка равна плотности массы полимера. Рассчитанная величина поперечного диаметра такого клубка составляет приблизительно 100 А. Отсюда можно заключить, что в большинстве глобулы, встречающиеся на фотографиях, представляют собой отдельные молекулярные цепочки. С увеличением концентрации кислоты мы наблюдали образование «вторичных» структур. Это довольно компактные структуры, образованные соединением отдельных симметричных глобул без взаимного проникновения их друг в друга.[6, С.112]

Аналогия в поведении чистой полиакриловой кислоты и ее бариевой соли, проявляющаяся в образовании одинаковых вторичных структур и отдельных симметричных глобул, представляющих собой свернутые молекулярные цепочки, находит свое объяснение в одинаковой конфигурации длинпоцепочеч-ных полиионов в растворе. Полиакриловаякислотапредставляетсобойслабый полимерный электролит. Слабая кислота в чистом растворителе (в данном случае в воде) ионизирована только частично, и внутримолекулярные электростатические силы отталкивания между ионогенными группами (карбоксильными группами), соединенными ковалентными связями с молекулярной цепочкой, малы и недостаточны для выпрямления молекул. Гибкий полиион под действием термических сил сворачивается в случайную кольцевую конфигурацию. Правда, подобный полимерный клубок будет обладать более диффузной структурой по сравнению с полиакрилатом бария, где к термическим силам будут прибавляться большие внутримолекулярные силы, обусловленные присутствием двухвалентного бария и взаимодействием его с карбоксильными группами, стягивающими клубок в более плотное образование. И величины вязкостен, определенные для полиакриловой кислоты и полиакрилата бария, подтверждают более диффузную структуру молекулярных клубков полиакриловой кислоты по сравнению с ее бариевой солью.[6, С.112]

Рис. III.30. Изменение толщины моно- . Рис. III.31. Образование вторичных кристаллов линейного полиэтилена в за^ зародышей кристаллизации на по-висимости от температуры кристалли- верхности роста монокристалла, зации.[8, С.186]

Большое влияние на скорость химических реакций в полимерах оказывает форма макромолекулы, а также образование вторичных (надмолекулярных) структур при агрегировании макромолекул (гл. III). При этом может замедляться скорость диффузии низкомолекулярных реагентов и реакция проходит только по границе раздела отдельных надмолекулярных структур. Если же реакция идет в растворе полимера, то свернутая или выпрямленная форма макромолекулы соответственно затрудняет или облегчает вероятность столкновения реагента с функциональными группами макромолекул.[9, С.34]

Большое влияние на скорость химических реакций в полимерах оказывает форма макромолекулы, а также образование вторичных (надмолекулярных) структур при агрегировании макромолекул (гл. III). При этом может замедляться скорость диффузии низкомолекулярных реагентов и реакция проходит только по границе раздела отдельных надмолекулярных структур. Если же реакция идет в растворе полимера, то свернутая или выпрямленная форма макромолекулы соответственно затрудняет или облегчает вероятность столкновения реагента с функциональными группами макромолекул.[10, С.34]

Механизм обменных реакций, протекающих при нагревании смеси двух полиамидов, в результате которых такая смесь превращается в сополиамид, предложен Шампетье266; согласно предложенной им схеме предполагается образование вторичных амидных групп, сопровождающееся выделением гексаметилен-диамина по уравнению[11, С.69]

жет явиться образование вторичных «единиц течения>/(ассоциа тов) при установившейся деформации сдвига. В ряде работ [9 10] специально изучали влияние таких структурных образова. ний на вязкость расплава. Если действительно такие реологические «единицы течения» образуются только при больших, или нелинейных, деформациях, то их существование никак не может сказаться на форме релаксационного спектра Я(т), рассчитанного по экспериментальным данным, которые получают при. малых деформациях. Поэтому различие между рассчитанными и измеренными значениями вязкости можно объяснить структурными эффектами, отличными от обычных зацеплений между макромолекулами, которые существуют как при малых, так и при больших деформациях.[5, С.156]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Белозеров Н.В. Технология резины, 1967, 660 с.
2. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
3. Вострокнутов Е.Г. Переработка каучуков и резиновых смесей, 1980, 281 с.
4. Ульянов В.М. Поливинилхлорид, 1992, 281 с.
5. Шен М.N. Вязкоупругая релаксация в полимерах, 1974, 272 с.
6. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
7. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
8. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
9. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
10. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
11. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
12. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.

На главную