На главную

Статья по теме: Определяет молекулярную

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Протекание пвследней реакции во многом определяет молекулярную массу образуемого полимера. Доля этой реакции снижается с увеличением полярности реакционной среды. Так как катализатор при катионной полимеризации постоянно регенерируется, то он может многократно использоваться в процессе и поэтому эффективным будут небольшие количества катализатора.[5, С.33]

Цепная молекула полимера называется макромолекулой. Составляющие ее низкомолекулярные повторяющиеся структурные единицы, или звенья, образованы низкомолекулярными веществами, способными к многократному соединению друг с другом в результате химической реакции синтеза *. Эти вещества называют мономерами, а их соединение в макромолекулу полимера происходит в результате химических реакций, протекающих по законам цепных или ступенчатых процессов. Очевидно, что степень полимеризации, т. е. число мономерных звеньев в одной макромолекуле, определяет молекулярную массу полимера, которая составляет десятки, сотни тысяч, а иногда и миллионы углеродных единиц[2, С.7]

Когда сетка полиуретана подвергается деформации растяжения, то противодействие внешнему напряжению оказывают ориентированные участки между сшивками. «Оборванные» цепи релак-сируют независимо от приложенного напряжения. При строгом соблюдении требований по функциональности исходных соединений обычно получается уретановый эластомер с пространственной структурой, близкой к идеальной. Но в реальных системах наблюдаются отклонения от оптимально сформированной сетки. Возникают полусвязанные и даже вообще свободные цепи, создающие неэффективную часть сетки [58]. Здесь уместно еще раз напомнить данные по сопротивлению разрыву полиуретанов на основе поли-оксипропиленгликолей. Несомненно, что низкие физико-механические показатели этих полиуретанов есть следствие нерегулярности структуры и отсутствия обратимой кристаллизации • при растяжении. Кроме того, промышленный полиэфир молекулярной массы 2000 обычно содержит 4—5% (мол.) монофункциональных молекул, образующих не несущие нагрузки цепи и золь-фракцию полимеров [33, с. 33]. Наличие монофункциональных соединений в пространственной структуре уретановых эластомеров влияет не только на изменение соотношения эффективных и неэффективных цепей, но в некоторой степени определяет молекулярную массу и моле-кулярно-массовое распределение сегментов. При этом свободные[1, С.543]

В большинстве случаев интенсивность протекания этой реакции определяет молекулярную массу полимера.[4, С.125]

В большинстве случаев интенсивность протекания этой реакции определяет молекулярную массу полимера.[4, С.127]

Продукты элементарных реакций соединяются в одну молекулярную цепь, и число образовавшихся амидных связей определяет молекулярную массу макромолекулы.[3, С.59]

Олигоэфиры такого типа получают поликонденсацией гликоля с алифатической или ароматической дикарбоновой кислотой в присутствии акриловой кислоты или ее производных, количество которых и определяет молекулярную массу олигоэфира. Олигоэфиры, содержащие непре-[3, С.354]

Соединение мономеров в макромолекулы происходит в результате химических реакций, которые протекают по законам цепных или ступенчатых процессов. Число повторяющихся звеньев в макромолекуле определяет молекулярную массу полимера, которая может составлять десятки, сотни тысяч и миллионы углеродных единиц. Какой бы реакцией ни был получен полимер, он всегда состоит из набора макромолекул, различных по размеру, поэтому молекулярная масса полимера является некоторой средней величиной.[6, С.9]

Соединение большого числа одинаковых или разных низкомолекулярных молекул в процессе химической реакции приводит к появлению у полимера целого комплекса новых физико-механических свойств — высокой упругости, эластичности, способности к пленко-и волокнообразованию. Наличие длинных цепных молекул, имеющих химические, т. е. прочные, связи вдоль цепи, и физические, т. е. слабые, связи между цепями, является наиболее характерным признаком полимеров. При этом большая молекула обладает определенной гибкостью. Цепная молекула полимера называется макромолекулой. Составляющие ее низкомолекулярные повторяющиеся структурные единицы, или звенья, образованы низкомолекулярными веществами, способными к многократному соединению друг с другом в результате химической реакции синтеза. Эти вещества называются мономерами, а их соединение в макромолекулу полимера происходит в результате химических реакций, протекающих по законам цепных или ступенчатых процессов. Очевидно, что степень полимеризации, т. е. число мономерных звеньев в одной макромолекуле, определяет молекулярную массу полимера, которая составляет десятки, сотни тысяч и миллионы углеродных единиц и равна молекулярной массе исходного мономера, умноженной на степень полимеризации.[7, С.8]

Соединение большого числа одинаковых или разных низкомолекулярных молекул в процессе химической реакции приводит к появлению у полимера целого комплекса новых физико-механических свойств — высокой упругости, эластичности, способности к пленко-и волокнообразованию. Наличие длинных цепных молекул, имеющих химические, т. е. прочные, связи вдоль цепи, и физические, т. е, слабые, связи между цепями, является наиболее характерным признаком полимеров. При этом большая молекула обладает определенной гибкостью. Цепная молекула полимера называется макромолекулой. Составляющие ее низкомолекулярные повторяющиеся структурные единицы, или звенья, образованы низкомолекулярными веществами, способными к многократному соединению друг с другом в результате химической реакции синтеза. Эти вещества называются мономерами, а их соединение в макромолекулу полимера происходит в результате химических реакций, протекающих по законам цепных или ступенчатых процессов. Очевидно, что степень полимеризации, т. е. число мономерных звеньев в одной макромолекуле, определяет молекулярную массу полимера, которая составляет десятки, сотни тысяч и миллионы углеродных единиц и равна молекулярной массе исходного мономера, умноженной на степень полимеризации.[8, С.8]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
3. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
6. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
7. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
8. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.

На главную