На главную

Статья по теме: Изменение соотношения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В общем случае в процессе сополимеризации происходит изменение соотношения компонентов в исходной смеси, и поэтому функции распределения FAfi и /вп являются дифференциальными. Так как проинтегрировать уравнения (22) и (23) не представляется возможным, применяют следующий способ расчета внутримолекулярного распределения. Рассчитывают вероятности в узких пределах превращения мономера в полимер, полагая при этом, что интегральный состав такой же, как дифференциальный.[3, С.114]

В общем случае в процессе сополимеризации происходит изменение соотношения компонентов в исходной смеси, и поэтому функции распределения Т7 А и /-"в являются дифференциальными. Так как проинтегрировать уравнения (22) и (23) не представляется возможным, применяют следующий способ расчета внутримолекулярного распределения. Рассчитывают вероятности в узких пределах превращения мономера в полимер, полагая при этом, что интегральный состав такой же, как дифференциальный.[3, С.187]

По мере возрастания температуры происходит постепенное изменение соотношения кристаллической и аморфной фаз. Снижение степени кристалличности высокомолекулярных соединений выражается в изменении плотности полимеров. На рис. 20 показано, как влияет повышение температуры полиэтилена на степень его кристалличности, определяемую по изменению плотности полимера. Резкое изменение характера кривой удельного веса в конце процесса (точка А) совпадает с быстрым уменьшением степени кристалличности и переходом полимера в аморфное состояние. Переход в аморфную фазу сопровождается скачкообразным изменением всех свойств полимера, в том числе его удельного объема (рис. 21).[2, С.52]

Как видно из рис. 125, дипольно-групповые потери в обоих случаях монотонно возрастают с увеличением содержания полярного компонента. При этом изменение соотношения компонентов в сополимере МА — стирол не вызывает смещения tgu4a,;c по оси температур, а для сополимера ММА — стирол с увеличением со-держания стирола tg 6МЛ1{С смещается в сторону более низких температур, т. е. времена релаксации диполыю-групповых потерь уменьшаются.[4, С.284]

Пиролитическая газовая хроматография принята в 1977 г. в качестве стандартного метода ASTM(D 3452) для идентификации полимеров: часть 1 - для индивидуальных эластомеров и часть 2 - для смесей. Применяются три различные способа пиролиза: кварцевая пи-ролитическая трубка (500-800 С), нагреваемые электричеством платиновые филаменты (800-1200 °С) и пиролизер по точке Кюри (550-650 °С). Наилучшая воспроизводимость результатов достигается при использовании пиролизера по точке Кюри; этим методом с точностью ±2 % были исследованы смеси изопренового, этилен-пропиленового, бутадиенового каучуков. Метод ASTM предусматривает использование любого типа образцов полимера (кроме твердых вулканизатов типа эбонита) массой от 1 до 5 мг. Все промышленные эластомеры характеризуются отчетливой пирограммой, при анализе смесей полимеров требуется использование пирограмм стандартов. Для точного количественного анализа любой композиции необходимы как минимум три (или более) известные смеси с соотношением компонентов от 80/20 до 20/80. Изменение соотношения интенсивностей пиков пиро-граммы позволяет рассчитать содержание полимеров в смеси.[6, С.564]

Когда сетка полиуретана подвергается деформации растяжения, то противодействие внешнему напряжению оказывают ориентированные участки между сшивками. «Оборванные» цепи релак-сируют независимо от приложенного напряжения. При строгом соблюдении требований по функциональности исходных соединений обычно получается уретановый эластомер с пространственной структурой, близкой к идеальной. Но в реальных системах наблюдаются отклонения от оптимально сформированной сетки. Возникают полусвязанные и даже вообще свободные цепи, создающие неэффективную часть сетки [58]. Здесь уместно еще раз напомнить данные по сопротивлению разрыву полиуретанов на основе поли-оксипропиленгликолей. Несомненно, что низкие физико-механические показатели этих полиуретанов есть следствие нерегулярности структуры и отсутствия обратимой кристаллизации • при растяжении. Кроме того, промышленный полиэфир молекулярной массы 2000 обычно содержит 4—5% (мол.) монофункциональных молекул, образующих не несущие нагрузки цепи и золь-фракцию полимеров [33, с. 33]. Наличие монофункциональных соединений в пространственной структуре уретановых эластомеров влияет не только на изменение соотношения эффективных и неэффективных цепей, но в некоторой степени определяет молекулярную массу и моле-кулярно-массовое распределение сегментов. При этом свободные[1, С.543]

Изменение соотношения в сополимере блоков ПИБ и звеньев циклогексе-[5, С.323]

Изменение соотношения эпоксидная смола — сшивающий :нт обычно приводит к изменению диэлектрических характе-:тик покрытий, так как при этом изменяется содержание по->ных групп. Кроме того, вследствие изменения густоты про-)анственной сетки меняется и молекулярная подвижность це-I Ниже приведена зависимость диэлектрических показателен Гс покрытий на основе ненаполненных композиций без[10, С.199]

Изменение соотношения в сополимере блоков ПИБ и звеньев циклогексена дает возможность варьировать свойства продуктов в широких пределах (от каучука до пластмасс).[11, С.323]

Рис. 6. Изменение соотношения Т/То[8, С.27]

Рис. 2.25. Изменение соотношения между затратами на аппаратурное и программное обеспечение (по данным фирмы Бюллер — МИАГ\ ФРГ)[7, С.124]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
6. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
7. Андрашников Б.И. Интенсификация процессов приготовления и переработки резиновых смесей, 1986, 225 с.
8. Ахмедов К.С. Водорастворимые полимеры и их взаимодействие с дисперсными системами, 1969, 89 с.
9. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
10. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
11. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
12. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
13. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
14. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
15. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
16. Рафиков С.Р. Методы определения молекулярных весов и полидисперности высокомолекулярных соединений, 1963, 337 с.
17. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
18. Иржак В.И. Сетчатые полимеры, 1979, 248 с.
19. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
20. Рафиков С.Р. Введение в физико - химию растворов полимеров, 1978, 328 с.
21. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
22. АбдельБари Е.М. Полимерные пленки, 2005, 351 с.
23. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
24. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
25. Гейлорд Н.N. Линейные и стереорегулярные полимеры, 1962, 568 с.
26. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
27. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную