На главную

Статья по теме: Поведение материалов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Линейная теория вязкоупругости позволяет описать поведение материалов при различных переходных режимах деформирования, т. е. когда решающую роль приобретает зависимость напряжений или деформаций от времени. В предельном случае- больших времен соотношения этой теории приводят к простейшим зависимостям: линейной зависимости напряжений от скорости деформации для линейной вязкоупругои жидкости и линейной зависимости напряжений от деформаций для вязкоупругого твердого тела. Следовательно, в условиях применимости теории линейной вязкоупругости реологические свойства жидкости в установившемся течении подчиняются закону Ньютона, а твердого тела в условиях равновесной деформации — закону Гука.[8, С.103]

Основные механизмы взаимоусиливающего действия нагрузки и ультрафиолетового облучения можно рассмотреть с учетом немногочисленных имеющихся данных. Одновременное , воздействие растягивающей нагрузки и ультрафиолетового облучения на ориентированные полимеры явно ускоряет процесс образования свободных радикалов и (или) микро- и макротрещин в волокнах ПА-66 [213, 214], натурального шелка, хлопка и в «триацетатных» волокнах [213]. В ПММА не было обнаружено никакого влияния облучения [213]. В экспериментах с волокнами из хлопка и триацетата выявлено, что при низких -напряжениях растяжения (аоК70 МПа) ультрафиолетовое облучение снижает долговечность волокна более чем на 4 порядка по величине. В таких условиях отсутствие или присутствие кислорода было менее существенно, поскольку облучение образца в вакууме лишь немного увеличивало долговечность по сравнению с его облучением ,на воздухе. В интервале напряжений 70<а0<220 МПа не обнаружено влияния кислорода на долговечность триацетатного волокна. В этом интервале напряжений влияние облучения уменьшалось с увеличением 0о-При aot>220 МПа долговечность зависела лишь от напряжения, но не от внешних факторов ультрафиолетового облучения или содержания кислорода. Для хлопкового волокна было получено в какой-то степени подобное же поведение, хотя верхний предел напряжения был меньше и зависел от наличия воздушной атмосферы в процессе испытания [213]. Описанное поведение материалов свидетельствует о существовании трех механизмов ослабления, которые действуют одновременно и с разными скоростями: окисление, деградация под действием ультрафиолетового облучения и ползучесть. Влияние окисления наблюдалось для ацетатного волокна лишь при значениях долговечности, превышающих 4[>5-103 с, и при одновременном действии ультрафиолетового облучения. При меньших значениях долговечности 100<4<5-103 с ослабление, по существу, было вызвано облучением. При очень низких значениях долго-[1, С.320]

При переработке полимеров уплотнение сыпучих материалов, предшествующее плавлению, происходит внутри большинства машин для переработки, и поведение материалов при уплотнении оказывает существенное влияние на характеристики этих машин.[3, С.237]

Капиллярные вискозиметры обладают и рядом недостатков, ограничивающих их возможности. Измерение происходит только в режиме установившегося течения, хотя поведение материалов в первый момент после приложения нагрузки и процесс релаксации напряжения также представляют большой интерес. Для исследования материалов при высоких скоростях деформации необходим их повышенный расход. При анализе таких высоковязких материалов, как каучуки и резиновые смеси, большую ошибку вносят "входные потери" (нежелательные перепады давления на начальном участке, где еще не развился профиль потока). Для целей контроля качества научный подход ' с использованием капиллярной реометрии и её идеальных условий -, испытаний слишком сложен и требует больших затрат времени.[4, С.452]

Для метода испытания на растяжение очень важен выбор скорости приложения нагрузки. Некоторые материалы при медленном нагружении оказываются мягкими и эластичными, а в случае приложения быстрых или ударных нагрузок становятся хрупкими. Такое поведение материалов зависит от их времени релаксации.[7, С.53]

Установленные закономерности могут быть целенаправленно использованы при изучении и рационализации технологических процессов производства различных материалов, при улучшении их качеств. Они должны приниматься во внимание в проектных и конструкторских работах,, когда необходимо предвидеть поведение материалов в различных рабочих условиях.[6, С.217]

Испытания резин механические — определение механич. свойств образцов резин, проводимое унифицированными методами. Цель И. р.— контроль качества сырья, полуфабрикатов и готовых изделий резинового производства. К И. р. относят также определение условных показателей, к-рые косвенно характеризуют поведение материалов при эксплуатации и проводятся специальными методами, имитирующими соответствующие условия пагружения. Показатели, определяемые с помощью специальных методов, пригодны лишь для сравнительной оценки материалов, предназначенных для конкретных условий эксплуатации. Если в результате исследований механич. свойств установлены общие закономерности механич. поведения резин, описываемые аналитически, то физич. константы найденных ур-ний, являющиеся абсолютными характеристиками испытуемого материала, определяют так наз. общими (или физическими) методами. Показатели физич. методов характеризуют свойства материалов независимо от конструкции образца для испытания.[11, С.448]

Испытания резин механические — определение меха-нич. свойств образцов резин, проводимое унифицированными методами. Цель И. р.— контроль качества сырья, полуфабрикатов и готовых изделий резинового производства. К И. р. относят также определение условных показателей, к-рые косвенно характеризуют поведение материалов при эксплуатации и проводятся специальными методами, имитирующими соответствующие условия нагружения. Показатели, определяемые с помощью специальных методов, пригодны лишь для сравнительной оценки материалов, предназначенных для конкретных условий эксплуатации. Если в результате исследований механич. свойств установлены общие закономерности механич. поведения резин, описываемые аналитически, то физич. константы найденных ур-ний, являющиеся абсолютными характеристиками испытуемого материала, определяют так наз. общими (или физическими) методами. Показатели физич. методов характеризуют свойства материалов независимо от конструкции образца для испытания.[12, С.445]

Наиболее распространены след, методы определения теплостойкости: 1) по Мартенсу (ГОСТ 15089-69) — консольный изгиб при напряжении ок. 5 Мн/м2 (50 кгс/см2); 2) по Вика — вдавливанием цилиндра сечением 1 мм2 под действием нагрузки ок. 10 или ок. 50 н (1 или 5 кгс) на глубину 1 мм; 3) двухопорный изгиб при одном из нескольких стандартизованных напряжений (ГОСТ 12021—66, ASTM, ИСО). Теплостойкость существенно зависит от нагрузки: чем больше нагрузка, тем ниже теплостойкость. Поэтому часто оценивают поведение материалов при различных нагрузках. Предусмотренные ГОСТ 12021—66 три нагрузки позволяют оценить не только теплостойкость, но и характер ее падения с увеличением нагрузки. Теплостойкость широко применяют при контрольных испытаниях, когда надо следить за изменением темп-рных границ стабильности материала, т. е. при отверждении, пластификации и т. п.[12, С.443]

Наиболее распространены след, методы определения теплостойкости: 1) но Мартенсу (ГОСТ 15089-69) — консольный изгиб при напряжении ок. 5 Мн/м2 (50 кгс/см'2)', 2) по Вика — вдавливанием цилиндра сечением 1 мм2 под действием нагрузки ок. 10 или ок. 50 и (1 или 5 кгс) на глубину 1 мм', 3) двухопорный изгиб при одном из нескольких стандартизован :ых напряжений (ГОСТ 12021—66, ASTM, ИСО). Теплостойкость существенно зависит от нагрузки: чем больше нагрузка, тем ниже теплостойкость. Поэтому часто оценивают поведение материалов при различных нагрузках. Предусмотренные ГОСТ 12021 — 06 три нагрузки позволяют оценить не только теплостойкость, но и характер ее падения с увеличением нагрузки. Теплостойкость широко применяют при контрольных испытаниях, когда надо следить за изменением теми-рпых границ стабильности материала, т. е. при отверждении, пластификации и т. п.[11, С.446]

Характеристика поведения каучуков и резиновых смесей при их переработке является первостепенной проблемой в производстве каучука [2]. Для этого имеются в распоряжении методы, начиная от реологических испытаний с точным определением таких зависимостей, как кривые вязкости [3]кривые течения, нормальные коэффициенты упругости [4] заканчивая простыми методами испытания технологических свойств, как, например испытания по Муни или Дефо. Кроме того, аналитические методы исследования молекулярной структуры каучуков позволяют предсказать или объяснить поведение материалов при переработке.[4, С.436]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
3. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
4. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
5. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
6. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
7. Северс Э.Т. Реология полимеров, 1966, 199 с.
8. Виноградов Г.В. Реология полимеров, 1977, 440 с.
9. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
10. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
11. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
12. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
13. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную