На главную

Статья по теме: Радикальных инициаторов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Полимеризация этилена в присутствии радикальных инициаторов при высоких давлении и температуре приводит к получению ПЭВД с большим количеством боковых ответвлений, включая и длинноцепные разветвления [37,38] — разветвления, молекулярная масса которых сравнима с молекулярной массой основной полимерной цепи. ПЭНД имеет меньшее количество боковых ответвлений (главным образом метильных и этильных групп), т. е. макромолекулы его линейны. Это отличие обусловливает более высокую плотность, прочность и жесткость полимера, ограничивает применение ПЭНД в тех случаях, когда требуется повышенная гибкость и ударная вязкость. Повышение ударной вязкости и стойкости к растрескиванию достигается введением в макромолекулу боковых короткоцепных ответвлений, т. е. сополимери-зацией этилена с другими олефинами.[6, С.28]

Привитая сополимеризация под действием радикальных инициаторов как метод введения в диеновые полимеры функциональных групп весьма заманчива вследствие доступности прививаемых мономеров и инициаторов самой различной природы и технологической простоты процесса.[1, С.237]

Вулканизация может протекать также под действием свободно-радикальных инициаторов (например, пероксидов) или под действием излучений высокой энергии (например, у-излучения). Механизм реакции заключается в отрыве подвижного атома, например атома водорода, от макромолекулы с образованием свободного радикала. Рекомбинация макрорадикалов в конечном счете приводит к образованию разветвленных и сшитых полимеров.[2, С.61]

Таким образом, несмотря на наличие некоторых общих черт у радикальной и ионной полимеризации как цепных реакций синтеза полимеров, где кинетическая цепь реакций активных растущих частиц с молекулами мономера воплощается в материальную цепь макромолекул, между ними имеются существенные различия. Прежде всего в ионной полимеризации в качестве растущей частицы действуют заряженные ионы, а в свободиорадикалыюй полимеризации— свободные радикалы с неспаренным электроном на атоме углерода. Ионы более активны и реакционпоспособны. В связи с этим требуются более тщательно контролируемые условия их образования и существования. Инициирующие системы в ионной полимеризации в основном являются каталитическими, т. е. восстанавливают свою исходную структуру, а не расходуются необратимо, как в случае радикальных инициаторов. Во многих случаях катализаторы ионной полимеризации осуществляют не только химическое инициирование полимеризации, но и координируют молекулы мономера около растущих частиц. Это позволяет получать строго регулярное пространственное (стерическое) расположение звеньев мономера в цепи полимера (стереорегулярные полимеры).[3, С.36]

По-иному протекает реакция в присутствии радикальных инициаторов. Радикал инициатора, образующийся при значительно более низких температурах (100°С и ниже), отрывает водород от а-метиленовых групп полидиенов:[3, С.285]

Винилацетат может полимеризоваться в присутствии различных свободно-радикальных инициаторов. Приводим несколько типичных рецептов.[4, С.212]

Этот мономер легко полимеризуется в присутствии большинства свободно-радикальных инициаторов в различных условиях с образованием водорастворимого полимера. Полимер успешно используется как заменитель плазмы крови.[4, С.222]

Высокая степень стереорегулярности виниловых и акриловых полимеров может быть достигнута с помощью радикальных инициаторов, катионных и анионных катализаторов при низких температурах [23, 24]. Использование метода ядерного магнитного резонанса и результаты теоретического исследования Фордхема с сотрудниками [25] помогли пролить свет на многие неясные во-[5, С.36]

Растворимость. В табл. 1 показано влияние условий сополимеризации акрилонитрила и целлюлозы в присутствии свободно-радикальных инициаторов на растворимость целлюлозы в сополимере в медьэтилендиаминовом комплексе. Растворимость целлюлозы в продуктах, полученных радиационным методом, больше, чем в продуктах, полученных в присутствии ионов церия [34]. Как сообщалось ранее, число молекул целлюлозы, приходящихся на 1 моль привитого полиакрилонитрила, в первом случае в присутствии водного раствора ZnCl2 колеблется от 5 до 86, а в последнем случае составляет приблизительно 0,4 [42], что объясняется, вероятно, более низкой растворимостью целлюлозы в этом сополимере. Целлюлоза, содержащаяся[13, С.223]

Сополимеры. Малеиновая и фумаровая к-ты, а также их соли (калиевые, магниевые и др.) сополимеризуются в присутствии радикальных инициаторов, напр, перекиси бензоила, с рядом мономеров. Получены сополимеры М. к. с винилацетатом, акриламидом, стиролом, акрилонитрилом, метакриловой к-той, а также сополимеры Ф. к. с 2-метил-5-винилпиридином, акриловой к-той, стиролом, акрилонитрилом (см. таблицу). Содержание к-т в сополимерах не превышает 50% . Тенденция к чередованию звеньев особенно заметна при сопо-лимеризацпи этих к-т со стиролом и винилацетатом.[15, С.69]

Дихлорид полиизопрена может быть получен взаимодействием полиизопрена с хлористым сульфурилом (SO2C12) в присутствии радикальных инициаторов:[3, С.282]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Сёренсон У.N. Препаративные методы химии полимеров, 1963, 401 с.
5. Амброж И.N. Полипропилен, 1967, 317 с.
6. Архипова З.В. Полиэтилен низкого давления, 1980, 240 с.
7. Розенберг М.Э. Полимеры на основе винилацетата, 1989, 175 с.
8. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
9. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
10. Сидельховская Ф.П. Химия N-винилпирролидона и его полимеров, 1970, 151 с.
11. Пашин Ю.А. Фторопласты, 1978, 233 с.
12. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
13. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
14. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
15. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
16. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
17. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
18. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
19. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
20. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
21. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
22. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную