Релаксация напряжений и ползучесть линейных несшитых полимеров только качественно описываются с помощью моделей Фойхта и Максвелла даже при малых напряжениях и деформациях, когда эти материалы линейно вязкоупруги. Рис. 6.6 иллюстрирует сходство и разницу между экспериментом и теорией. Основное отличие состоит в том, что предсказываемая теорией реакция материала на приложенные извне воздействия описывается простой экспоненциальной зависимостью от времени G (/) и / (t), в то время как из рис. 6.6 видно, что экспериментально наблюдаемые значения G (t) и J (t) удовлетворительно аппроксимируются лишь суммой экспонент типа встречающихся в уравнениях (6.4-2) и (6.4-4). Таким образом[2, С.148]
Из приведенного выше краткого описания видно, что в пределах одного цикла формования одновременно, но в различной степени интенсифицируются и вязкий разогрев (объемная скорость потока при заполнении формы очень высока), и теплопередача, и релаксация напряжений. На эту картину накладываются еще и явления переноса, и, поскольку времена затвердевания полимера соизмеримы с вре-[2, С.522]
Вполне логично предположить, что линейное вязкоупругое поведение можно описать (по крайней мере, качественно), если представить, что среда имеет двойственную природу и обладает свойствами ньютоновской вязкой жидкости и твердого упругого тела Гука. Эта идея может быть выражена с помощью простой механической модели, изображенной на рис. 6.5. Если, например, в макс-велловском элементе происходит релаксация напряжений ("у = О при t < 0, v = YO ПРИ t > 0), то их зависимость от времени имеет вид (см. Задачу 6.1):[2, С.147]
Рассмотрим ньютоновскую жидкость и расплав полимера, находящиеся в одинаковых экспериментальных условиях между двумя параллельными пластинками (рис. 6.3). Нижняя пластинка фиксирована, верхняя мгновенно смещается на расстояние Ах *. Тогда мгновенно приложенная деформация составит уух — Дх/Дг/. В обеих жидкостях будут развиваться напряжения тух == Fx (t)IAu. Их зависимость от времени показана на рис. 6.3, а и б. В случае ньютоновской жидкости напряжения релаксируют мгновенно в соответствии с уравнением (6.2-1); таким образом, за исключением бесконечно малого промежутка времени, когда пластинка смещается на расстояние Длг, величина d (&x/&y)/dt --= dvjdt = у = 0. Следовательно, медленная релаксация напряжений в полимерных расплавах при у — О не может быть описана с помощью определяющего уравнения ньютоновской жидкости, однако это возможно в рамках теории вязкоупругости (см. разд. 2.1 и 6.4).[2, С.138]
Релаксация напряжений. В общем случае релаксацией называется процесс перехода к состоянию равновесия, происходящий во времени. Релаксация напряжений представляет собой[3, С.122]
Деформационные свойства ПЭВД — ползучесть и релаксация напряжений — в зависимости от молекулярной массы изучены в работе [152] на фракционированных образцах. Показано, что с увеличением молекулярной массы ползучесть е и релаксационный модуль Е ПЭВД уменьшаются (рис. 7.28).[4, С.151]
Испытания резин при a=const (или при F=consi) проходят в условиях, когда вследствие малой долговечности (при больших концентрациях озона) релаксация напряжений не успевает произойти и распределение напряжений менее равномерное, чем в случае действия такого же среднего напряжения при s=const, когда образцы специально подвергаются релаксации напряжений. Поэтому можно ожидать, что при испытаниях по режиму a=const или F=const показатель пя будет больше, чем при s=const, так как в первом случае больше доля молекул, напряженных до необходимого уровня. Опыт подтверждает это предположение. Так, например, для вулканизата СКВ в области сравнительно больших концентраций озона п3=1,8, а при меньших концентрациях озона п;! = 0,4.[11, С.347]
Следует заметить, что деформация в этом приборе не сохраняется строго постоянной. Однако если модуль упругости пружины существенно выше модуля упругости образца, то релаксация напряжений с достаточно хорошим[3, С.129]
В листе резиновой смеси после выхода из области деформации имеются остаточные напряжения, которые благодаря высокоэластическим свойствам материала постепенно выравниваются (происходит релаксация напряжений), и толщина листа несколько увеличивается за счет сокращения других размеров.[8, С.113]
В процессе испытаний можно поддерживать постоянными указанные силовые факторы, а также скорости изменения осевой силы, гидростатического давления и крутящего момента. Машина может работать при постоянных значениях нагрузок (ползучесть) и деформаций (релаксация напряжений), а также при'постоянной скорости нагружения и деформирования.[12, С.67]
Однако для большинства резин пригодность уравнения Бики сомнительна [536]. Это связано с рядом допущений, положенных в основу предложенных уравнений, и прежде всего с пренебрежением возможностью существования упорядоченных областей вблизи частицы наполнителя, с различиями в деформируемости цепей в образце в целом и вблизи поверхности наполнителя и существованием вблизи поверхности наполнителя слоя полимера с более высокой концентрацией поперечных связей. При высоких удлине-ниях*йод действием больших напряжений в наполненном каучуке происходят перемещения точек зацеплений, узлов сетки и частиц наполнителя. Поэтому в общем виде релаксация напряжений в наполненных резинах определяется процессами релаксации, связанными с отрывом цепей каучука от частиц наполнителя, и перегруппировкой частиц наполнителя, протекающей с очень малой скоростью [247].[16, С.268]
ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!! Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.