На главную

Статья по теме: Структурных переходов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

С особенностями и глубиной подобных структурных переходов при ориентировании связано то, насколько резко образуется «шейка» — локальное сужение растягиваемого полимера, в к-ром значение растяжения и степень ориентации намного выше, чем в остальной части растягиваемого полимера. После образования шейки дальнейшее ориентирование образца идет нутом распространения шейки на всю длину полимера.[7, С.260]

С особенностями и глубиной подобных структурных переходов при ориентировании связано то, насколько резко образуется «шейка» — локальное сужение растягиваемого полимера, в к-ром значение растяжения и степень ориентации намного выше, чем в остальной части растягиваемого полимера. После образования шейки дальнейшее ориентирование образца идет путем распространения шейки на всю длину полимера.[11, С.258]

Совпадение максимумов свечения на кривой РТЛ с областями кинетических и структурных переходов в полимерах дает основание считать, что акты рекомбинации зарядов осуществляются за счет размораживания теплового движения кинетических единиц, на которых находятся электронные ловушки или центры свечения. При этом время жизни электрона в ловушке определяется временем релаксации той кинетической единицы, на которой находятся связанные электроны.[2, С.242]

Для сопоставления механических релаксационных переходов, наблюдаемых на спектрах внутреннего трения, и структурных переходов, наблюдаемых на температурных зависимостях объема, энтальпии или теплофизических свойств (коэффициента теплового расширения, теплоемкости и др.), необходимо выяснить связь между частотой механических воздействий v и скоростью нагревания да (охлаждения д).[4, С.228]

Рассмотрим в качестве примера механические а- и В-про-цессы релаксации в полибутадиенметилстироле (сшитом СКМС-10). Температуры структурных переходов при стандартной скорости нагревания w = 1 К-мин-' равны для а-процесса температуре структурного стеклования Гст=197 К, а для В-процесса Т$ = 105 К.. По данным релаксационной спектрометрии на рис. IX. 11 приведена зависимость 1/Га-103 от Igv, а аналогичная зависимость (рис. IX. 15) для В-перехода рассчитана по уравнению (IX. 53) при U$ = 30,5 кДж-моль~' и Д- = 2-10~13 с. На рис. IX. 15 для а-процесса прямая 2 дает значение обратной температуры структурного размягчения 1/Тр, а кривая 1 означает зависимость (IX. 53) для а-процесса (температуры механического размягчения — стеклования). При некоторой _ низкой частоте VKP, равной эквивалентной частоте по формуле (IX. 62), температуры механического н ^ структурного размягчения[4, С.233]

С другой стороны, обстоятельный обзор данных по свойствам полифосфазвнов (гл. 9) лишь показывает, что характер наблюдавшихся в них структурных переходов и классификацию соответствующих состояний полимера нельзя считать точно установленными. Вместе с тем общим для всех глав книги является стремление интерпретировать материал в терминах .низкомолекулярных мезофаз и классифицировать морфологию изучаемого полимера как нематическую, холестерическую или смектическую. Это не всегда можно сделать достаточно однозначно, поскольку сходство наблюдаемых структур с текстурами жидких кристаллов во многих случаях является чисто внешним, а сами исследуемые вещества не являются жидкими и могут быть названы лишь структурными аналогами мезофаз (см., например, гл. 8).[6, С.6]

Метод РТЛ позволяет изучать механизм радиолиза полимеров и явления термолюминесценции, а также типы ловушек и особенности захвата зарядов. С помощью метода РТЛ можно определять значения температур структурных переходов (температуры стеклования, плавления и т. д.) в интервале 77—300 К и производить анализ формы максимумов на кривой высвечивания РТЛ, что дает возможность оценить характер структурного перехода. Можно также определять энергию активации процесса молекулярного движения, так как максимумы, расположенные в области релаксационных переходов, при увеличении скорости разогрева смещаются в сторону высоких температур. Метод РТЛ позволяет исследовать степень однородности двухкомпонентных смесей высокомолекулярных соединений и определять, совместимы или не совместимы разные полимеры. С помощью метода РТЛ можно производить также анализ многокомпонентных смесей полимеров, содержащих низкомолекулярные наполнители. 9.2.2. Природа явления РТЛ[2, С.235]

Однако, хотя детали надмолекулярной организации или релаксационные характеристики влияют — и подчас решающим образом — на электрическую прочность полимеров, вряд ли можно рекомендовать само свойство электрической прочности применять для исследований структуры или структурных переходов. Для этого, как мы видели, есть более прямые и эффективные методы. Задача должна ставиться наоборот: зная все структурные и релаксационные факторы, влияющие на электрическую прочность, следует выбирать оптимальные структуру и условия для технической эксплуатации полимеров как диэлектриков.[1, С.263]

Как следует из формулы (109), все изменения в структуре полимера, приводящие к изменению плотности, влияют на значение диэлектрической проницаемости. У политетрафторэтилена, сополимеров тетрафторэтилена с гексафторпропиленом и полистирола диэлектрическая проницаемость с повышением температуры уменьшается (рис. 33). Это находится в соответствии с уменьшением плотности полимера при нагревании. Температурный коэффициент диэлектрической проницаемости и неполярных полимеров с е' = 2 Ч- 2,5 примерно равен удвоенному коэффициенту линейного расширения. Изломы на температурных зависимостях диэлектрической проницаемости связаны с изменением коэффициента расширения в области структурных переходов.[5, С.82]

Термодинамика и статистическая механика структурных переходов в макромолекулах[7, С.62]

В этом ур-шш в явном виде не содержится зависимости скорости процесса от теми-ры, по А и тг зависят от темп-ры и резко изменяются в области структурных переходов, прежде всего вблизи темп-ры стеклования. Т. к. с ростом темп-ры время релаксации уменьшается, в переменных механич. полях скорость механохимич. превращений часто характеризуется отрицательным температурным коэффициентом.[7, С.122]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Рейтлингер С.А. Проницаемость полимерных материалов, 1974, 271 с.
4. Бартенев Г.М. Физика полимеров, 1990, 433 с.
5. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
6. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
7. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
8. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
9. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
10. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
11. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
12. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную