На главную

Статья по теме: Теплового воздействия

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Свободные радикалы в полимеризационной среде могут возникать в результате теплового воздействия (термическое инициирование), под действием света (фотоинициирование), радиоактивного облучения (радиационное инициирование). Однако эти способы инициирования на практике применяются редко, поскольку они или не обеспечивают нужной скорости полимеризации, или вызывают побочные процессы. Поэтому в промышленных условиях применяют метод химического инициирования, при котором используют вещества (инициаторы), легко-распадающиеся с образованием свободных радикалов. К ним относятся пероксиды, гидропероксиды, азо- и диазосоединсния. окислительно-восстановительные системы.[8, С.112]

Кинетические данные показывают, что аналогично влияет температура на длительность коагуляции. Из данных по зависимости длительности разделения фаз от температуры могут быть определены пороговые температуры коагуляции Гпо?, и ГПор2, которые, так же как Спор, и Сп0р2, являются характерными параметрами процесса коагуляции для данного типа латекса [45]. Если при введении электролита в латексные системы происходит резкое уменьшение сил электростатического отталкивания между частицами за счет снижения ^-потенциала частиц и подавления диссоциации адсорбированных молекул ПАВ (и изменения растворимости молекул ПАВ), то под влиянием теплового воздействия происходит ослабление водородных связей молекул воды и ПАВ адсорбционного слоя, что также способствует гидрофобизации системы и понижению ее устойчивости. В интервале времени TZ — TI, по-видимому, преодолевается энергетический барьер, препятствующий коагуляции системы и разделению фаз. При проведении коагуляции в условиях, при которых концентрация электролита Сэл ^ СПОР! и[1, С.258]

Это соотношение связывает скорость теплового воздействия w с температурой стеклования Тс и с молекулярной характеристикой вещества т.[4, С.39]

Первая задача эквивалентна умению предсказать реакцию материала на всевозможные виды механического и теплового воздействия, а также воздействия окружающей среды, охарактеризовать его постоянно изменяющееся состояние и определить,[2, С.9]

На стадии инициирования реакции необходимо, чтобы в системе осуществилось получение (генерирование) свободных радикалов в результате теплового воздействия (термическое инициирование), светового (фотоинициирование), радиоактивного облучения (радиационное инициирование), химическими инициаторами (химическое радикальное инициирование) и др.[6, С.20]

Кроме регулярного аналитического контроля стабилизаторов, для оценки их эффективности используют индекс сохранения вязкости по Муни после теплового воздействия на каучук. В одном из наиболее распространенных методов компоненты резиновых смесей смешивают и подвергают термической обработке в условиях, соответствующих реальным условиям переработки, в небольших закрытых смесителях (например, в камере пластикордера фирмы "Брабендер"), где материал подвергается сдвиговым и термическим нагрузкам, вызывающим процессы термомеханодеструкции. В процессе испытаний регистрируют зависимость крутящего момента М,ф на валу смесителя от времени. При достаточно эффективном действии стабилизатора наблюдается монотонное снижение Мкр, в то время как при низкой эффективности стабилизатора или малом его содержании на кривой зависимости М^, от времени обнаруживается максимум, положение которого связано со скоростью протекания процессов деструкции и структурирования. Результаты испытаний на пластикордере коррелируют с данными ДТА и определения индукционного периода.[9, С.428]

Напыление реплики на поверхность исследуемого образца осуществляют с помощью вакуумного универсального поста. Установка оборудуется рабочей камерой с колпаком, вакуумной и электрической системами (рис. 7.11). В рабочей камере устанавливают держатели для образца и для распыляемого материала на расстоянии 60—100 мм друг от друга. В качестве распыляемого вещества чаще всего применяют углерод, кварц, серебро, платину, хром и другие материалы. Материал испаряют с помощью электрического тока силой 60—80 А. Рабочая камера снабжена диафрагмами и заслонками для защиты от нежелательного теплового воздействия испарителя на образец. Для обеспечения средней длины пробега частиц испаряемого материала больше диаметра колпака и прямолинейности распространения этих частиц внутри колпака создают разрежение порядка 0,133—1,33 МПа (ЫО-6—Ы0~5 мм рт. ст. Частицы испаряемого вещества при попадании на поверх-[5, С.114]

Новым в технологических схемах подготовительных цехов является использование резиносмесителей с камерой объемом 0,62—0,65 м3 на заключительной стадии процесса смешения, а также для приготовления маточных и готовых камерных смесей, т. е. в условиях жесткого ограничения допустимой температуры смеси. Из опыта эксплуатации резиносмесителя с камерой объемом 0,65 м3 (РС-650) установлено, что средний уровень качественных характеристик получаемых в нем смесей не ниже, (а в некоторых случаях и выше) уровня соответствующих показателей смесей, получаемых в резиносмесителях с объемом камер 0,25 и 0,33 м3 (РС-250 и РС-330). В то же время из-за более сильного деформационно-силового и теплового воздействия на смесь, приводящего к некоторой неравномерности распределения температур по массе заправки, смеситель РС-650 используют лишь для смесей с вязкостью по Муни не выше 50—70 единиц и с временем до начала подвулканизации не менее 18—20 мин. При изготовлении камерных смесей на основе бутилкаучука и каучуков общего назначения в случае четкой организации технологического процесса, тщательной очистки смесительного оборудования и строгого соблюдения параметров в процессе смешения, линия с РС-650 позволяет получить смеси, качество которых не уступает качеству смесей, изготовленных в резиносмесителе РС-250.[10, С.59]

Повышение износостойкости протектора при паровом режиме объясняется меньшей реверсией за счет снижения на 40-60% длительности теплового воздействия на протектор со стороны формы.[11, С.411]

Для инициирования реакции необходимо, чтобы в системе осуществилось получение (генерирование) свободных радикалов в результате теплового воздействия (термическое инициирование), светового (фотоинициирование), радиоактивного облучения (радиационное инициирование), химическими инициаторами (химиче-[13, С.13]

Для инициирования реакции необходимо, чтобы в системе осуществилось получение (генерирование) свободных радикалов в результате теплового воздействия (термическое инициирование), светового (фотоинициирование), радиоактивного облучения (радиационное инициирование), химическими инициаторами (химиче-[16, С.13]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
5. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
6. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
7. Амброж И.N. Полипропилен, 1967, 317 с.
8. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
9. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
10. Андрашников Б.И. Интенсификация процессов приготовления и переработки резиновых смесей, 1986, 225 с.
11. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
12. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
13. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
14. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
15. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
16. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
17. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
18. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
19. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
20. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.
21. Фишер Э.N. Экструзия пластических масс, 1970, 288 с.

На главную