На главную

Статья по теме: Уменьшение напряжения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Из уравнения (8.6) следует, что уменьшение напряжения со временем в условиях релаксации происходит экспоненциально. Если деформации достаточно малы, формула (8.6) с хорошим приближением описывает релаксационный процесс одинаковых по природе кинетических единиц. Релаксацию напряжения различных по природе кинетических единиц можно описать набором моделей Максвелла, соединенных параллельно. Число моделей в таком наборе должно соответствовать числу кинетических единиц т, участвующих в процессе релаксации. Аналитическое выражение, описывающее процессы релаксации напряжений в наборе кинетических единиц, можно получить суммированием формул типа (8.6) :[2, С.124]

На рис. 63 представлены типичные кривые релаксации напряжения аморфных полимеров. Из рисунка видно, что уменьшение напряжения в образце происходит тем быстрее, чем выше температура. Измеряя напряжение в образце с заданной величиной растяжения, можно рассчитать величину модуля, который называется -модулем релаксации (к л и релаксационным модулем). Бремя измерения может быть стандартизовано, например, 10 сек.. Тогда кзме-Т^.мая величина релаксационного модуля обозначается как ?1П.[3, С.169]

На рис. 63 представлены типичные кривые релаксации напряжения аморфных полимеров. Из рисунка видно, что уменьшение напряжения в образце происходит тем быстрее, чем выше температура. Измеряя напряжение и образце с заданной величиной растяжения, можно рассчитать величину модуля, который называется •модулем релаксации (клн релаксационным модулем). Бремя измерения может быть стандартизовано, например, 10 сек. Тогда кзче-1«мая величина релаксационного модуля обозначается как Ещ.[6, С.169]

Среди оксидов металлов наиболее эффективны пенто-оксид сурьмы и диоксид марганца (5—10 масс. ч). Резины с SbgOs превосходят резины с CuS по сопротивлению тепловому старению, они также меньше набухают в воде [88]. В ходе релаксации сжатия при 120 °С происходит (рис. 3.12) быстрое уменьшение напряжения в вулканизатах бутадиен-нитрильных каучуков с SbaOs и CuS на первой стадии и более медленное на второй (по сравнению с тиурамной резиной). При 150—200 °С на воздухе скорость релаксации резин с Sb2Os и CuS одинакова со скоростью релаксации тиурамных, а в среде нефти даже меньше. Это позволяет сделать вывод о сочетании в вулканизационной структуре прочных и слабых вулканизационных связей [84; 85; 87; 88]. Последние, по-видимому, представляют собой координационные связи между цианогруппами в цепи каучука и атомами металла на поверхности дисперсных частиц вулканизующего агента и поэтому входят в состав гетерогенного вулканизационного узла. Действительно, характерная для смесей бутадиен-нитрильного каучука с хлористым цинком полоса поглощения при 2290 см~', свидетельствующая о вступлении части цианогрупп в комплексные соединения с хлористым цинком [85; 89], наблюдалась и в смесях бутадиен-нитрильного каучука с сульфидом и сульфатом двухвалентной меди. Повышенную статическую прочность исследуемых вулканизатов по сравнению с тиурамными при одинаковой густоте сетки, а также более высокое сопротивление утомлению вулканиза-[9, С.174]

Выше мы говори чи о том, что деформация реальных полимеров в любом физическом состоянии имеет неравновесный характер. Причина этого — наличие сетк , физических узлов (флуктуационная сетка), которая не но воляет системе принять равновесные конфорчацин за время действия силы, т. с предопределяет неравновесный характер деформирования Поэтому говорят, что деформация имеет релаксационный характер (релаксация латинское слово, означающее оставление, уменьшение напряжения, отдых). Как уже отмечалось (см. разд I 3 и 4.1), процессы релаксации — это процессы перехода системы из неравновесного состояния к термодинамическому равновесию под действием внутренних сил, т е. процессы, в которых равновесие устанавливается во времени Различают механические, э юктрическне магнитные и другие релаксационные процессы. Механические релаксационные явления возникают при нарушении равновесия структурных э рементов, электрические— при нарушении равновесия ориентации электрических диполей, магнитные магнитных моментов. Механические релаксацией-.ные явления могут быть двух видов релаксация нш ряжения и релаксация деформации[4, С.259]

На сопротивление разрушению благоприятно влияют высокая молекулярная масса, уменьшение напряжения при правильной отливке образца и совмещение с эластомерами.[8, С.167]

Согласно первому постулату, каждая деформация е(т), длившаяся в течение времени Дт, вызовет уменьшение напряжения на /(?— т)е(т)Дт, где f(t — т) — функция памяти. Считая, что при отсутствии релаксационных явлений тело подчиняется закону Гуна, получаем[19, С.139]

Согласно первому постулату, каждая деформация е(т), длившаяся в течение времени А т, вызовет уменьшение напряжения на f(t — т)е(т)Дт, где f(t — т) — функция памяти. Считая, что при отсутствии релаксационных явлений тело подчиняется закону Гуна, получаем[17, С.142]

Упруго-релаксационные свойства. Релаксация резин происходит при постоянной деформации. Определяют уменьшение напряжения за заданный промежуток времени, характеризующее скорость релаксации. Ползучесть резин наблюдается при заданном напряжении; измеряют увеличение деформации за определенные промежутки времени, характеризующие скорость ползучести. В обоих процессах со временем[17, С.449]

Упруго-релаксационные свойства. Релаксация резин происходит при постоянной деформации. Определяют уменьшение напряжения за заданный промежуток времени, характеризующее скорость релаксации. Ползучесть резин наблюдается при заданном напряжении; измеряют увеличение деформации за определенные промежутки времени, характеризующие скорость ползучести. В обоих процессах со временем[19, С.446]

Измерение скорости К. при растяжении основано на способности ориентированных аморфных систем удлиняться при К., что приводит к падению первоначального напряжения по мере развития К. Это уменьшение напряжения служит мерой скорости К. Главным в исследованиях К. при растяжении является выяснение влияния степени растяжения К на скорость К. и морфологию образующейся кристаллич. фазы. Установлено, что при постоянной темп-ре скорость К. существенно увеличивается с повышением К-[19, С.590]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
6. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
7. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
8. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
9. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
10. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
11. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
12. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
13. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
14. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
15. Роговин З.А. Физическая химия полимеров за рубежом, 1970, 344 с.
16. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
17. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
18. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
19. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
20. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную