На главную

Статья по теме: Увеличении количества

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Продолжительность стадии инициирования сокращается при увеличении количества свободных радикалов.[1, С.218]

При одновременном повышении температуры полимеризации и увеличении количества инициатора скорость процесса резко возрастает, а молекулярный вес полиметилметакрилата уменьшается (табл. 19).[3, С.344]

При эквивалентном количестве эпоксигрупп и фенола образуется линейный полимер. При увеличении количества фенола[3, С.416]

В присутствии инициатора полимеризацию акрилонитрила рекомендуется проводить при 30-60". В этом случае по истечении очень небольшого отрезка времени начинает образовываться тонкая суспензия нерастворимого полимера в мономере. При увеличении количества образующегося полимера примерно до 10% суспензия начинает уплотняться, и при глубине полимеризации 60% осадок превращается в твердую пористую белую массу.[3, С.332]

Для ньютоновских жидкостей распределение давления в зазоре вальцов при одинаковых размерах и скорости вращения валков определяется уравнением (10.5-11), а для жидкостей, подчиняющихся степенному закону течения, — уравнениями (10.5-31) и (10.5-32). Для расчета профиля давлений необходимо знать величину К, определяемую выражением (10.5-12); она, как и параметр Хъ представляет собой нормированную координату сечения, в котором материал отрывается от поверхности одного из валков. Как следует из рис. 10.25, координата сечения, в котором материал поступает в зазор между валками, однозначно определяется координатой Хг. Координаты входного и выходного сечений в общем случае зависят от объема полимера, находящегося на валках, от размера валков и величины зазора между ними. Ясно, что когда толщина слоя полимера равна расстоянию между валками, то Хг =- Х2 = 0 и давление при этом также равно нулю. Следовательно, суммарный объем полимера на валках должен превышать минимальное значение, равное 2я (R + + Я0) 2Я0 (в расчете на единицу ширины). При увеличении количества вводимого полимера (при постоянной скорости вращения валка) величина |Х2| увеличивается. Это приводит к повышению давления между валками, повышению скорости течения, увеличению Хг и утолщению слоя расплава полимера на поверхности валка. Между суммарным объемом полимера (отнесенным к единице ширины валков) V и параметрами Хг и Х2 при условии постоянства ширины слоя полимера на поверхности валка установлено приближенное соотношение[4, С.398]

При увеличении количества диизоцианата и удлинителя цепи относительно полиэфиров (сложных или простых) увеличивается концентрация уретановых и ароматических групп, а отсюда следует ожидать н повышения твердости и напряжения (табл. 2.15).[11, С.56]

Чтобы предупредить сплющивание всасывающих рукавов под действием внешнего давления или местной нагрузки, в толщу их стенок также вводят проволочную спираль При увеличении количества тканевых слоев рукава могут быть использованы как напорные. В соответствии с этим рукава резино-тканевые с ме-[5, С.554]

В работе [347] было установлено, что зависимость изменения массы полиэтилена от начального содержания пластификатора в пластикате имеет нелинейный характер. При увеличении количества пластификатора от 0 до 10% величина миграции возрастает незначительно. Дальнейшее увеличение содержания пластификатора в композиции приводит к повышению миграции и на участке, соответствующему 15—35%-ному содержанию, зависимость величины миграции от количества введенного пластификатора становится почти линейной, причем в середине этого участка кривая имеет максимальный наклон. Однако по мере дальнейшего увеличения содержания пластификатора наклон кривой уменьшается. Авторы объясняют S-образную форму кривой тем, что при малых количествах пластификатора в ПВХ (до 10%), весь пластификатор сольватирован полимером, а это снижает вероятность отрыва молекул пластификатора от полимера. С увеличением содержания пластификатора возрастает число непрочно связанных с полимером молекул пластификатора, и поэтому миграция, возрастает.[13, С.181]

Однако очень часто высокая стойкость к действию растворителей сочетается у полимеров с плохими показателями других свойств Например, улучшение масло и бензостойкости при увеличении количества полярных групп в цепи (групп CN) приводит к ухудшению морозостойкости полимера (глава VIII) Промышленности же требуются полимеры, сочетающие высокие морозо-и маслостойкость Одним из путей получения полимеров со свойствами, характерными для высокомолекулярных соединений совершенно разных типов, является получение привитых сополимеров (глава II) Так, например, прививая к цепи маслостойкого полимера какой-нибудь морозостойкий полимер, можно сохранить свойства обоих полимеров[8, С.343]

Большое значение при отверждении имеет объемная усадка (изменение первоначального объема образца) и количество выделяющихся низкомолекулярных продуктов реакции. Усадка возрастает с уменьшением молекулярной массы олигомеров и увеличением в них числа функциональных групп, а также при увеличении количества выделяемых при отверждении низкомолекулярных продуктов. Обычно процесс отверждения протекает под влиянием катализаторов, которые не входят в состав трехмерной сетки полимера, инициаторов и специальных отвердителей, в отличие от первых не входящих в состав конечного отвержденного полимера. Отвер-дители вступают в химическое взаимодействие с олигомером и входят в трехмерную сетку. В качестве отвердителей используют полифункциональные низкомолекулярные или олигомерные вещества. Например, оли-гоэпоксиды отверждаются ди- и полиаминами, ангидридами кислот и др., а фенолоформальдегидные олигомеры отверждаются уротропином (гексаме-гилентетрамином), параформом, эпоксидными олигомерами и т.д.). Роль отвердителей могут выполнять некоторые растворители - фурфурол для фенолоформальдег'идных олигомеров, стирол или метилметакрилат - для[12, С.106]

Большое значение имеет объемная усадка отверждаемого изделия и количество выделяющихся низкомолекулярных продуктов реакции Усадка и внутреннее давление в материале, создаваемое низкомо пекулярными продуктами, вызывают искажение размеров и формы изделия Усадка возрастает с уменьшением молекулярной массы олигомеров и увеличением в них числа функциональных групп а также при увеличении количества выделяемых при отверждении низкомолекулярных продуктов Так, усадка при отверждении без выделения ннзкомолекулярных продуктов составляет 3—6%, а с выделением—15—25%.[10, С.182]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Кравчук А.С. Механика полимерных композиционных материалов, 1985, 304 с.
3. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
4. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
5. Белозеров Н.В. Технология резины, 1967, 660 с.
6. Зильберман Е.Н. Примеры и задачи по химии высокомеолекулярных соединений, 1984, 224 с.
7. Кноп А.N. Фенольные смолы и материалы на их основе, 1983, 280 с.
8. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
9. Горбунов Б.Н. Химия и технология стабилизаторов полимерных материалов, 1981, 368 с.
10. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
11. Wright P.N. Solid polyurethane elastomers, 1973, 304 с.
12. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
13. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
14. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
15. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
16. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
17. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
18. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
19. Липатов Ю.С. Адсорбция полимеров, 1972, 196 с.
20. Льюис У.N. Химия коллоидных и аморфных веществ, 1948, 536 с.
21. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
22. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
23. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
24. Каргин В.А. Коллоидные системы и растворы полимеров, 1978, 332 с.
25. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
26. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
27. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
28. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
29. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
30. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
31. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
32. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
33. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
34. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
35. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 3 выпуск 1 книга 2, 1959, 502 с.
36. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
37. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
38. Перепелкин К.Е. Растворимые волокна и пленки, 1977, 104 с.
39. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.
40. Почепцов В.С. Химия и технология поликонденсационных полимеров, 1977, 140 с.
41. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную