На главную

Статья по теме: Электрическую прочность

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

На электрическую прочность ПЭВД оказывает влияние молекулярная масса. С ростом молекулярной массы электрическая прочность ПЭВД возрастает. В области низких температур это влияние незначительно. С повышением температуры до комнатной оно становится заметным. При 80 °С изменение средней молекулярной массы в 2,4 раза приводит к увеличению электрической прочности ПЭВД в 1,8 раз [157, с. 144]:[3, С.159]

Естественным образом электрическую прочность полимеров можно использовать не как эксплуатационное свойство, а для исследования структуры постольку, поскольку она связана с температурой, а через нее — с электропроводностью и деформационными состояниями. С определенными оговорками, при этом можно пользоваться принципом ТВЭ. Так, электрическая прочность подавляющего большинства полимеров в силу указанных факторов при повышении температуры убывает, причем наиболее резкие изменения происходят в области релаксационных или фазовых переходов.[2, С.263]

Существенное влияние на электрическую прочность полимеров оказывает также введение пластификаторов. Как правило, добавка пластификатора снижает <^ПР полимера [4, с. 113; 132]. Это снижение примерно пропорционально содержанию пластификатора и тем более заметно, чем выше температура, при которой производится пробой[12, С.146]

При оценке влияния наполнителей на электрическую прочность помимо образования неоднородного диэлектрика необходимо учитывать возможность изменения надмолекулярной структуры наполненных полимеров по сравнению с ненаполненными и вероятность увеличения макроскопической дефектности образцов. Нередко при введении наполнителей, особенно при высоких степенях наполнения, в материале возникают поры и трещины; в таких случаях падение электрической прочности возможно даже при незначительном различии в значениях диэлектрической проницаемости и электрической проводимости-наполнителя и полимера. С другой стороны, некоторые мелкодисперсные добавки могут способствовать образованию однородной мелкосферолитной структуры образцов и тем самым приводить к увеличению ^пр [4, с. 112; 129].[12, С.146]

Для выяснения влияния толщины образцов на электрическую прочность испытывали вулканизаты акрилонитрильных каучуков СКН-18, СКН-26 и СКН-40 [559, с. 285]. Зависимость пробивного напряжения от толщины почти прямолинейна, а электрическая прочность слегка уменьшается с увеличением толщины образцов. Аналогичные зависимости получены при изучении влияния толщины образцов на механическую прочность.[9, С.255]

Однако, хотя детали надмолекулярной организации или релаксационные характеристики влияют — и подчас решающим образом — на электрическую прочность полимеров, вряд ли можно рекомендовать само свойство электрической прочности применять для исследований структуры или структурных переходов. Для этого, как мы видели, есть более прямые и эффективные методы. Задача должна ставиться наоборот: зная все структурные и релаксационные факторы, влияющие на электрическую прочность, следует выбирать оптимальные структуру и условия для технической эксплуатации полимеров как диэлектриков.[2, С.263]

Электрической прочностью называется физическая величина, значение которой равно напряженности электрического поля, при которой происходит пробой диэлектрика [61; гл. I]. Различают электрическую прочность в однородном и неоднородном электрических полях, в переменных и постоянных полях, при импульсном воздействии [62, гл. II].[2, С.262]

Электрическая прочность. Как и во всех диэлектриках, при достижении некоторой напряженности электрического поля в полимерах возникает пробой, т. е. происходит электрический разряд через материал. Природа его мало отличается от природы пробоя в других диэлектриках; он сопровождается образованием разветвленных каналов, по которым идет разряд. Пробою в полимерных диэлектриках предшествует микроориентация материала, связанная с его "сильной" поляризацией. Полярные полимеры имеют большую электрическую прочность, чем неполярные. Электрическая прочность резко уменьшается при переходе из застеклованного в высокоэластическое состояние. Введение наполнителя также резко уменьшает электрическую прочность. Знание величины электрической прочности в зависимости от толщины, формы и других параметров образца — обязательное условие успешного применения резин в качестве электро-[1, С.73]

Рис. 7.39. Влияние температуры иа /0 электрическую прочность ПЭВД (пробой при постоянном токе за время ^ 8 10—30 с; образцы со сферической -^[3, С.159]

Центральные области сферолитов имеют повышенную электрическую прочность и обнаруживают меньший разброс значений. В образцах со сферолитным строением каналы пробоя преимущественно ориентируются по границам сферолитов [115, 130], поскольку в межсферолитном пространстве увеличивается дефектность упаковки и появляются микротрещины. Изменение[12, С.141]

Колесов с сотрудниками, изучая влияние размеров надмолекулярных образований на электрическую прочность полимеров, установил, что мелкосферолитная структура способствует увеличению электрической прочности [129]. С увеличением диаметра сферолитов электрическая прочность полимерных образцов снижается (рис. 85). Специальными опытами, в которых игольчатые электроды под микроскопом подводились к различным микроучасткам полипропиленовых пленок, было показано, что в пленках с крупными сферолитами различные микроучастки имеют разные значения $"„?, В/м:[12, С.141]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Шайдаков В.В. Свойства и испытания резин, 2002, 236 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
4. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
5. Смирнов О.В. Поликарбонаты, 1975, 288 с.
6. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
7. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
8. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
9. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
10. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
11. Крыжановский В.К. Технические свойства полимерных материалов, 2003, 240 с.
12. Сажин Б.И. Электрические свойства полимеров Издание 3, 1986, 224 с.
13. Северс Э.Т. Реология полимеров, 1966, 199 с.
14. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
15. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
16. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 8, 1966, 710 с.
17. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
18. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
19. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.
20. Чегодаев Д.Д. Фторопласты, , 196 с.

На главную