На главную

Статья по теме: Ньютоновской вязкостью

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Полагая, что жидкость проскальзывает по поверхности плунжера и обладает ньютоновской вязкостью, несжимаема и находится в изотермических условиях, получим математическую формулировку задачи в форме, которая дает следующее приближение для профиля скоростей:[1, С.348]

Для аномально вязких систем характер изменения вязкости при разных напряжениях различается (рис. 6.2). При малых напряжениях зависимости т) =/(Р) отвечают закону Ньютона, характерному для нормальных низкомолекулярных жидкостей. В отличие от последних коэффициент т]о (называемый наибольшей ньютоновской вязкостью) для полимеров и дисперсных систем в этой области напряжений весьма высок (105—109 Па-с). С увеличением напряжения сдвига происходит разрушение малопрочной пространственной структуры (сетки) системы и скорость течения аномально возрастает, пока при относительно больших напряжениях структура не будет разрушена полностью и в процессе течения не будет успевать восстанавливаться. Поэтому при больших напряжениях система характеризуется также ньютоновским законом течения, но коэффициент т)„, (называемый наименьшей ньютоновской вязкостью) намного меньше, чем т]о.[2, С.151]

При достаточно низких скоростях сдвига у вязкость расплава т? ПЭВД не зависит от у, т. е. является наибольшей ньютоновской вязкостью[5, С.146]

В отличие от обычных вязких жидкостей, деформационные свойства которых можно охарактеризовать одной физической константой — ньютоновской вязкостью, для характеристики вязкостных свойств расплавов полимеров в большинстве случаев приходится прибегать к двухпараметрическим зависимостям. Это обстоятельство усложняет не только технику экспериментального определения вязкостных свойств расплавов, но и математический аппарат, используемый для построения теории процессов переработки полимеров.[11, С.9]

При очень малых скоростях деформации вязкость полимеров -'асимптотически приближается к предельному значению, которое 'называется наибольшей (начальной) ньютоновской вязкостью. '[3, С.154]

Следовательно, в области малых и очень больших скоростей деформации полимеры ведут себя как ньютоновские жидкости, свойства которых можно характеризовать предельной ньютоновской вязкостью. При увеличении скоростей деформаций до значений, соответствующих переработке полимерных материалов (и, в частности, резиновых смесей) в изделия на производственном оборудовании, наблюдается аномалия вязкости, т. е. с увеличением напряжения и скорости сдвига вязкость не остается постоянной.[7, С.18]

Одновременное развитие всех этих видов деформации приводит к тому, что полимеры обладают в условиях установившегося течения свойствами так называемых аномально-вязких или неньютоновских жидкостей. Это означает, что при весьма малых напряжениях сдвига реологические свойства расплава характеризуются постоянной ньютоновской вязкостью. В этой области скорость накопления высокоэластических деформаций оказывается меньше скорости их релаксации, быстро увеличивающейся с увеличением деформации. Поэтому величина накопленной обратимой деформации оказывается невелика, а материал течет с постоянной ньютоновской вязкостью т)0 (рис. 1.8, область ОА). Дальнейшее увеличение напряжения (или скорости деформации) приводит к тому, что накапливающаяся деформация уже не успевает релаксировать. Поэтому какая-то часть деформации[11, С.20]

Общей причиной аномального поведения полимеров при течении является одновременное развитие всех видов деформации [см. уравнение (1.1)] и их релаксационный характер. В первой области скорость накопления высокоэластической деформации меньше скорости релаксации, вследствие чего величина накопленной высокоэластической деформации незначительная и материал течет с постоянной ньютоновской вязкостью [i0. Увеличение напряжения или скорости деформации приводит к тому, что деформация не успевает релаксировать. Поэтому часть общей деформации носит высокоэластический характер. Увеличение скорости деформации приводит к тому, что между скоростью накопления высокоэластической деформации и скоростью ее релаксации устанавливается динамическое равновесие. Этому режиму деформации полимера соответствует свое значение сопротивления деформации, мерой которого обычно считают величину коэффициента эффективной вязкости. Таким образом, зависимость эффективной вязкости от скорости деформации определяется комплексом релаксационной структуры полимера. Кроме того, нужно иметь в виду изменения структуры полимеров в процессе течения, которые также являются причинами аномалии вязкости. Эти изменения предполагают уменьшение сил взаимодействия между соседними слоями, происходящее, в конечном счете, вследствие очень высоких значений молекулярной~массы полимера. Изменение структуры материала может происходить в следующих направлениях: анизодиаметричность макромолекул и возможность ориентации их в потоке, межмолекулярное взаимодействие и затраты сравнительно небольших усилий для его нарушения, разрушение[7, С.18]

Отметим, что в области малых частот величина динамической вязкости реальных полимеров достаточно близко совпадает с ньютоновской вязкостью, соответствующей участку течения с весьма малой скоростью деформации.[11, С.27]

Таким образом, единственная разница между релаксационными спектрами расплавов реальных полимеров состоит в ширине и расположении области изменения функции Н (т) (область ВС на рис. 1.32), характеризуемой значением максимального времени релаксации тт и значением tt — момента резкого перегиба кривой Я (т). При этом величина тот определяется как значение 1/у, соответствующее выходу в область течения с постоянной ньютоновской вязкостью, поскольку при этом значение производной d lg r\ald lg у = 0. Следовательно, при т; ^ тт и вся функция Я (т) = 0.[11, С.46]

При малых скоростях сдвига подчинение расплавов полимеров закону Ньютона обусловлено тем, что в них не успевает накапливаться высокоэластическая деформация, и ориентация цепных молекул, вызываемая ею, подавляется тепловым броуновским движением макромолекул.. При таких режимах деформирования скорость релаксационных процессов в полимере выше скорости накопления им высокоэластических деформаций, и материал течет с постоянной наибольшей ньютоновской вязкостью т]0 (участок /, рис. II. 15). При очень высоких напряжениях и скоростях сдвига накопленная высокоэластическая деформация • вызывает предельную ориентацию макромолекул в направлении течения, при этом сопротивление деформации, т. е. вязкость, резко снижается и материал течет с постоянной наименьшей ньютоновской вязкостью t]oo (участок ///, рис. II. 14; рис. II. 15).[8, С.35]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Тадмор З.N. Теоретические основы переработки полимеров, 1984, 632 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Кабанов В.А. Практикум по высокомолекулярным соединениям, 1985, 224 с.
4. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
5. Поляков А.В. Полиэтилен высокого давления, 1988, 201 с.
6. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
7. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
8. Брацыхин Е.А. Технология пластических масс Изд.3, 1982, 325 с.
9. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
10. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
11. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
12. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
13. Виноградов Г.В. Реология полимеров, 1977, 440 с.
14. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.

На главную