На главную

Статья по теме: Увеличение напряжения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Увеличение напряжения облегчает преодоление энергетического барьера механодеструкции (см. гл. 17). Произведение уа как раз и есть величина энергии, на которую снижается энергетический барьер разрыва связи под действием напряжения а, где у — структурный коэффициент, характерный для данного полимера и зависящий от химического строения макромолекул и от надмолекулярной структуры полимера. Структурный коэффициент как бы определяет эффективность действия напряжения, приводящего к снижению активации процесса разрушения полимера. Чем больше микронеод-нородностей в полимере, играющих роль концентраторов напряжения, тем больше у.[3, С.202]

Увеличение напряжения сдвига разрушает гетерофазные флуктуации и расслаивание происходит не скачкообразно, а постепенно и минимум вязкости в области расслаивания вырождается, что хорошо видно на рис. 18. На этом рисунке по оси абсцисс отложено значение разведения раствора для того, чтобы показать, что полученные изо-стрессы вязкости (линии равного напряжения сдвига) внешне похожи на изотермы реального газа. Действительно, разведение характеризует объем, занимаемый макромолекулами, а вязкость раствора характеризует взаимодействие между макромолекулами так же, как давление в газе отражает взаимодействие его'молекул. Из рисунка видно, что при работе с растворами можно получить всю кривую, включая область метастабильных состояний, что невозможно сделать при переходе газ — жидкость.[12, С.52]

Дальнейшее увеличение напряжения сдвига приводит к тому, что и другие макромолекулярные клубки, уже с меньшим значением молекулярной массы становятся упругонапряженны-ми и также пефестают участвовать в сегментальном движении. Это приводит к дальнейшему постепенному снижению вязкости с ростом напряжения сдвига.[3, С.165]

Стойкость высокомолекулярных соединений (прочность материала)' к механическим воздействиям зависит от приложенного напряжения, продолжительности действия нагрузки и температуры. При малом напряжении и низкой температуре полимеры разрушаются очень медленно. Увеличение напряжения при той же температуре сокращает время, необходимое для разрушения полимера. При повышенных температурах возможна термическая деструкция, которая ускоряется приложенными извне напряжениями. Во всех случаях разрушение полимера происходит в результате разрыва макромолекул.[4, С.296]

Ход кривых на рис. 53 плохо соответствует характеру изменения напряжения с температурой, наблюдаемого при деформации полностью аморфного коллагенового волокна [8]. В этом случае при поддержании постоянной длины наблю- ^ дается лишь относительно ела- '^'§40 бое увеличение напряжения с "~ "" ростом температуры. В связи с этим уместно отметить, что в „ 1 S^o коллагеновом волокне, поме- ? § щенном в 2М раствор смеси йодистой ртути и йодистого калия (среда, способствующая плавлению фибриллярных белков) при поддержании постоян- РиС-ной длины развивается напряжение порядка 100 кгс/СМ2 [22]. от температуры^ для коллагеновых[15, С.191]

При вулканизации ХСКЭП, содержащих 3% хлора и менее, предварительно сополимер дегидрохлорируют обычно при высокой температуре (например, при 180 °С). Полученные таким образом продукты можно рассматривать как СКЭП с двойными связями. Более продолжительное дегидрохлорирование (от 1 до 96 ч) приводит к постепенному увеличению степени сшивания (увеличение напряжения при удлинении 300% и уменьшение набухания), что свидетельствует о постепенном увеличении непредельности.[6, С.198]

Весьма существенна роль пространственной структуры в сегментированных уретановых эластомерах. Высокополярные группы образуют довольно прочную физическую сетку в основном за счет водородных связей. Результирующее действие от их введения в полимер — увеличение межцепного взаимодействия. С ростом концентрации полиуретановых и полимочевинных сегментов происходит значительное увеличение напряжения при удлинении эластомера. Используя принцип направленного сочетания сегментов различной природы, можно получить не только высокомодульные эластомеры, но и сохраняющие высокие механические свойства при повышенной температуре (табл. 7) [59].[1, С.544]

Предыдущее выражение качественно показывает, что большие напряжения в цепи будут получены только в том случае, если константы силового взаимодействия wi примерно того же порядка, что и в кристалле, и если модули упругости одинаково велики для всех участков по длине цепи. Один «слабый» участок значительно увеличивает среднее смещение и уменьшает напряжение. Следует также напомнить, что увеличение напряжения цепи вызвано не длиной L и абсолютным числом п точек[2, С.141]

Общей причиной аномального поведения полимеров при течении является одновременное развитие всех видов деформации [см. уравнение (1.1)] и их релаксационный характер. В первой области скорость накопления высокоэластической деформации меньше скорости релаксации, вследствие чего величина накопленной высокоэластической деформации незначительная и материал течет с постоянной ньютоновской вязкостью [i0. Увеличение напряжения или скорости деформации приводит к тому, что деформация не успевает релаксировать. Поэтому часть общей деформации носит высокоэластический характер. Увеличение скорости деформации приводит к тому, что между скоростью накопления высокоэластической деформации и скоростью ее релаксации устанавливается динамическое равновесие. Этому режиму деформации полимера соответствует свое значение сопротивления деформации, мерой которого обычно считают величину коэффициента эффективной вязкости. Таким образом, зависимость эффективной вязкости от скорости деформации определяется комплексом релаксационной структуры полимера. Кроме того, нужно иметь в виду изменения структуры полимеров в процессе течения, которые также являются причинами аномалии вязкости. Эти изменения предполагают уменьшение сил взаимодействия между соседними слоями, происходящее, в конечном счете, вследствие очень высоких значений молекулярной~массы полимера. Изменение структуры материала может происходить в следующих направлениях: анизодиаметричность макромолекул и возможность ориентации их в потоке, межмолекулярное взаимодействие и затраты сравнительно небольших усилий для его нарушения, разрушение[5, С.18]

Следовательно, для пленок аморфного полимера среднее значение х зависит от напряжения не потому, что напряжение влияет на вероятность разрушения образцов с тем или иным типом дефектов, а потому, что напряжение влияет на распределение дефектов образца по уровням. При наибольшем значении напряжения почти все образцы находятся в состоянии наиболее низкой прочности, поэтому и t имеет наименьшее значение. Уве-. личение толщины пленки приводит к примерно такому же изменению кривой распределения (рис. 8.14), как и увеличение напряжения для образцов толщиной 16 мкм (см. рис. 8.11). Функция распределения разрывного напряжения при испытании на разрывной машине (см. рис. 8.10) характеризуется тремя максимумами, которые соответствуют трем уровням прочности: аь 02 и оз. Кривая распределения прочности, представленная на рис. 8.10, соответствует кривой распределения долговечности (рис. 8.11) с тремя уровнями долговечности.[14, С.259]

В процессе деформации материала связи каучук — сажа, образовавшиеся при смешении в хаотическом порядке, разрываются и вновь восстанавливаются в новых положениях, закрепляя на поверхности сажи молекулы каучука, частично ориентированные в направлении деформации. В результате происходят местная релаксация и выравнивание локальных перенапряжений. Чем выше проч-ностьх.связи наполнителя с каучуком, тем большее усиливающее действие он оказывает, так как при последующей деформации и сопутствующей ей ориентации молекул должно произойти большее увеличение напряжения, необходимого для разрыва. Таким образом, выравнивание напряжений в ходе деформации является одной[8, С.265]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
3. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
4. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
5. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
6. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
7. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
8. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
9. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
10. Северс Э.Т. Реология полимеров, 1966, 199 с.
11. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
12. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
13. Торнер Р.В. Теоретические основы переработки полимеров, 1977, 464 с.
14. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
15. Манделькерн Л.N. Кристаллизация полимеров, 1966, 336 с.
16. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
17. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
18. Апухтина Н.П. Синтез и свойства уретановых эластомеров, 1976, 184 с.
19. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
20. Уайт Д.Л. Полиэтилен, полипропилен и другие полиолефины, 2006, 251 с.

На главную