На главную

Статья по теме: Неоднородности материала

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Хендус и Пензел [83] исследовали морфологию разрушения одиночного волокна ПА-6. Обычно закрученные и вытянутые одиночные волокна были затем испытаны на растяжение при различных скоростях деформации. Характерные поверхности разрушения воспроизведены на рис. 8.20 и 8.21 [84]. При малых скоростях деформации (е = 0,033 (г1) часто получаются v-образные надрывы (рис. 8.20). Подобные надрывы образуются благодаря трещине, которая 'начинается в виде дефекта или неоднородности материала, расположенной на поверхности волокна или вблизи нее. В то время как трещина медленно растет, незатронутое ею поперечное сечение волокна продолжает пластично деформироваться. В момент, определяемый размерами трещины и незатронутого поперечного сечения волокна и свойствами самого материала, происходит быстрое распространение трещины поперек волокна. Экспериментально определенная прочность одиночного волокна тем выше, чем меньше v-образный надрыв [83]. Волокна с наивысшей прочностью содержали едва видимые небольшие пустоты.[1, С.264]

При хрупком разрушении долговечность tb определяется временем, требуемым для образования быстро распространяющейся трещины от дефекта или неоднородности материала. Роль цепей в данном процессе будет рассмотрена в гл. 9.[1, С.279]

Активные наполнители образуют в резине цепочечные структуры, на поверхности которых происходит ориентация макромолекул каучука [545, 546]. Вследствие неоднородности материала напряжение в нем распределяется неравномерно. В местах возникновения перенапряжений часть цепных молекул, ранее адсорбированных на поверхности кристаллитов (если это кристаллизующийся каучук), или частиц наполнителя отделяется, в результате чего перенапряжения уменьшаются, и распределение напряжений становится более равномерным.[5, С.209]

Данные испытаний на раздир при более сложном виде концентрации напряжения - проколе - являются чувствительными к рецеп-турно-технологическим факторам резины и структурной неоднородности материала. Коэффициент изменчивости при разрыве выше, чем при проколе, а максимальное растягивающее (разрушающее) напряжение при проколе в несколько раз выше, чем при разрыве. • Динамические свойства эластомерных материалов (и корда) оценивают, измеряя число механических колебаний образцов до их полного разрушения при разных частотах (от низкочастотных до ультразвуковых) и различных типах нагрузок. Используют образцы-лопатки при растяжении, образцы с поперечной канавкой при продольном изгибе, образцы-гантели при знакопеременном изгибе с вращением, образцы-цилиндры при многократном сжатии. Динамические показатели измеряются в соответствии со следующими международными стандартами:[3, С.539]

Предельная прочность а„ меньше теоретической прочности от из-за структурной неоднородности материала и, следовательно, наличия в структуре прочных и слабых мест.[7, С.253]

При пластическом ослаблении tb эквивалентна времени, требуемому для образования локальной зоны вынужденной эластичности. Для появления такой зоны необходимо, чтобы величина напряжения оказалась недостаточной для возникновения растущей трещины от дефекта или неоднородности материала, прежде чем однородное неупругое деформирование объема образца не устранит возможные концентраторы напряжения. Поэтому переход от пластического вида разрушения[1, С.279]

Морфологические особенности образования трещин при ползучести изучались также Штокмайером [118]. Применяя трудоемкий метод соскабливания, он превратил целые секции трубы в тонкие пленки толщиной до 0,06 мм (рис. 8.37). Стенки труб из ПЭНП превращались в пленки площадью 0,9 м2, а затем с помощью сканирующего микроскопа выявлялись дефекты и неоднородности материала (рис. 8.38). Неоднородности могли быть обнаружены в каждой трубе и связывались с несовершенством смешивания ПЭНП с черной сажей [118].[1, С.287]

Гриффите вывел хорошо известный критерий разрушения изотропных материалов, содержащих эллиптическую трещину длиной 2а (уравнение (3.13)). Данная теория механики разрушения систематически разрабатывалась последние 50 лет, чтобы частично объяснить неупругое и (или) пластическое поведение твердых тел, различные формы трещин и разрушаемых образцов и даже неоднородности материала. До сих пор целью анализа, опирающегося на представления механики разрушения, было получение универсальных количественных критериев стабильности трещины и ее распространения. По возможности критерии не должны зависеть от состояния внешнего и внутреннего напряжений, формы трещины и образца, а дол-[1, С.333]

Большой разброс значений ар для образца, очевидно, свидетельствует о неоднородности материала, из которого он состоит. По[8, С.215]

Большой разброс значений ор для образца, очевидно, свидетельствует о неоднородности материала, из которого он состоит. По[9, С.215]

разрушение почти всегда начинается с микродефектов или, неодно-родностей, в материале, которые обусловливают возникновение локализованных напряжений, значительно превышающих среднее напряжение в массе материала. Если локализованные напряжения достаточно велики, они приводят к разрастанию дефекта и разрушению материала. Поэтому наряду с другими факторами прочность материала определяется природой и размерами дефектов, обусловливающих напряжения в вершине трещины, и упрочнение может быть связано с изменением величины перенапряжений вблизи вершин трещин, с релаксацией напряжений и перераспределением их на-большее количество центров прорастания микротрещин. Так как скорость разрастания трещин зависит от степени неоднородности материала, то необходимо учитывать влияние наполнителя на неоднородность не только с точки зрения возникновения макрогетерогенности, обусловленной наличием частиц наполнителя, но и микрогетерогенности, определяемой влиянием наполнителя на формирование структуры. Различия в коэффициентах термического расширения полимера и наполнителя приводят также к тому, что в результате охлаждения системы после смешения на границе раздела возникают перенапряжения или даже образуются вакуоли [313]. При нагружении наполненных образцов наблюдаются дополнительное растяжение в месте разрыва и ориентация, приводящая к упрочнению. Вблизи частиц наполнителя полимер испытывает удлинения е' большие, чем среднее удлинение образца е [302]. Исходя только из геометрического строения наполненной системы, можно получить соотношение[6, С.172]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Нелсон У.Е. Технология пластмасс на основе полиамидов, 1979, 255 с.
3. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
4. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
5. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
6. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
7. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
8. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
9. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.

На главную