На главную

Статья по теме: Концентрации напряжения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Коэффициент концентрации напряжения в вершине микротрещины равен |3 = П/з. Он зависит от формы, размеров трещины, ее ориентации по отношению к направлению растяжения. Поэтому максимальная техническая прочность не является константой материала. Она меняется от образца к образцу, так как разные образцы имеют различные наиболее опасные дефекты.[8, С.16]

Таким образом, для уменьшения концентрации напряжения и опасности растрескивания эпоксидных компаундов необходимо или изменять конструкцию заливаемой детали, увеличивая Кф и уменьшая жесткость конструкции, или изменять свойства компаунда, уменьшая OQ без уменьшения прочности.[7, С.172]

Если предположить, что коэффициент концентрации напряжения для всех трещин одинаков, то выражение для долговечности в этом случае будет отличаться от уравнения (I. 22) только предэкспоненциальным членом на множитель (m1+2m2)~1, где mt — число поверхностных, mz — число объемных трещин, причем m1+mz=m. Это отличие несущественно.[8, С.52]

В ориентированном состоянии коэффициент концентрации напряжения, вероятно, будет больше, чем в неориентированном, так как в последнем концентрация напряжений в вершинах трещин снижается из-за вынужденно-эластического течения материала. В общем же коэффициент 8 с ориентацией меняется мало, так как на модуль упругости ориентация почти не влияет. Учитывая это, можно сделать вывод, что отношение прочностеи неориентированного и предельно ориентированного полимера не должно превышать число п, зависящее от гибкости цепных молекул.[8, С.145]

Данные испытаний на раздир при более сложном виде концентрации напряжения - проколе - являются чувствительными к рецеп-турно-технологическим факторам резины и структурной неоднородности материала. Коэффициент изменчивости при разрыве выше, чем при проколе, а максимальное растягивающее (разрушающее) напряжение при проколе в несколько раз выше, чем при разрыве. • Динамические свойства эластомерных материалов (и корда) оценивают, измеряя число механических колебаний образцов до их полного разрушения при разных частотах (от низкочастотных до ультразвуковых) и различных типах нагрузок. Используют образцы-лопатки при растяжении, образцы с поперечной канавкой при продольном изгибе, образцы-гантели при знакопеременном изгибе с вращением, образцы-цилиндры при многократном сжатии. Динамические показатели измеряются в соответствии со следующими международными стандартами:[5, С.539]

Рассмотрим рост краевой поперечной трещины длиной I в тонкой полоске шириной L под действием растягивающего напряжения о. Если коэффициент концентрации напряжения в вершине трещины Ро практически не зависит от длины трещины, что имеет место в некоторых случаях, напряжение в вершине трещины определяется следующим образом:[3, С.298]

Все предшествующее рассмотрение касалось однородности распределения разрывов цепей в макромасштабе. До сих пор не учитывались эффекты ускорения концентрации напряжения при наличии микроструктурной неоднородности и кооперативного взаимодействия мест разрыва цепей. Подобные эффекты, по-видимому, не наблюдались при исследованиях разрыва цепей методами ИКС и ЭПР. Во всяком случае, они не влияют на огромную концентрацию мест разрыва цепей, накапливаемых перед окончательным разрушением материала. Данный факт, конечно, может свидетельствовать о том, что при длительном деформировании разрывы цепей остаются изолированными «дефектами» и не вызывают нестабильного роста трещин.[1, С.254]

Трещины серебра напоминают пену с открытыми ячейками, диаметр полостей и участков полимера которой в среднем равен ~20 нм. При дальнейшем растяжении продолжается процесс образования трещин серебра. Уменьшение модуля упругости и предела вынужденной эластичности с увеличением деформации объясняется уменьшением плотности, вызванного этой деформацией, и последующего увеличения коэффициента концентрации напряжения на микроскопических элементах полимера, содержащего трещины серебра. Высокие скорости восстановления материала с трещинами серебра после ползучести определяются в основном его поверхностным натяжением и большой внутренней удельной площадью поверхности таких трещин[1, С.365]

Согласно теории Буше — Халпина [69] , разрушение эластомеров определяется ограниченной вязкоупругой растяжимостью каучукоподобных нитей. Авторы данной концепции предполагают, что большая часть волокон на вершине растущей трещины натянута до своего критического удлинения Яс. Образец разрушается при большей деформации Кь, когда q волокон разорвутся за время h = qt'. Величины Кь и Кс связаны через ползучесть материала и коэффициент концентрации напряжений. Предложенная теория позволяет рассчитать удлинение при разрыве Кь, если известна ползучесть. При этом не учитывается зависимость концентрации напряжения от длины растущей трещины или уменьшения долговечности f одного волокна в процессе ползучести образца. Предполагается, что все волокна придется вытянуть от практически нулевого удлинения до Кс. В первую очередь это удлинение будет влиять на численные значения q, которые можно рассчитать путем построения экспериментальных поверхностей ослабления материала. Группа из q волокон при статистическом развитии событий, когда разрушение одного из них может повлечь за собой полное разрушение последующего, определяется средней долговечностью , равной qt', и распределением Пуассона для 1ъ'.[1, С.91]

Снижение энергии активации U приводит к уменьшению, а уменьшение концентрации напряжения — к увеличению долговечности полимера. В результате в зависимости от типа полимера и условий опыта прочность при переходе через Гхр может либо уменьшиться, либо возрасти.[3, С.318]

Дефекты структуры всегда являются концентраторами напряжений. Пример концентрации напряжения на микротрещине показан на рис. 10.4. При среднем напряжении о величина перенапряжения а' в вершине трещины (показано стрелками) может превышать о в десятки раз. Действующее в вершине микротрещины перенапряжение а' приводит к вынужденному перемещению части сегментов или групп сегментов (надмолекулярных структур), расположенных в непосредственной близости от вершины. Перемещение сегментов или надмолекулярных структур * под действием механического напряжения облегчается тем, что в образце накоплен дополнительный свободный объем при растяжении на первой стадии.[4, С.148]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
6. Бергштейн Л.А. Лабораторный практикум по технологии резины, 1989, 249 с.
7. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
8. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
9. Бокшицкий М.Н. Длительная прочность полимеров, 1978, 312 с.
10. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
11. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
12. Малкин А.Я. Методы измерения механических свойств полимеров, 1978, 336 с.
13. Перепечко И.И. Введение в физику полимеров, 1978, 312 с.
14. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
15. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
16. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
17. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
18. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную