На главную

Статья по теме: Неспаренные электроны

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Системы, содержащие неспаренные электроны, будучи помещены в магнитное поле напряженностью Я, могут поглощать энергию электромагнитных волн. В случае свободного электрона наложение магнитного поля создает два различных энергетических уровня, которые может занимать электрон. Образование двух энергетических уровней в магнитном поле, т. е. эффект Зеемана, является результатом наличия магнитного момента у электрона, который вследствие условий квантования может быть либо параллелен, либо антипараллелен полю. Разность энергий hv между уровнями дается соотношением (1), приведённым ранее при описании теоретических основ ЯМР. Величина hv равна g$H, где (3 — магнетон Бора, g — постоянная Ланде, или фактор спектроскопического расщепления, который для свободных электронов близок к 2,000. Для углеродных радикалов в конденсированной фазе .^-фактор отклоняется от значения, точно равного 2,000, лишь в третьем десятичном знаке [92]. В случае серусодержащих или кислородных радикалов наблюдаются большие отклонения, и^-факторы имеют значения около 2,025. В газах свободные радикалы могут иметь любое значение g от 0 до 2.[10, С.432]

С помощью спектроскопии электронного парамагнитного резонанса можно обнаружить неспаренные электроны и получить полезную информацию о ближайшем окружении электрона. Как правило, химической частицей, содержащей неспаренный электрон, является свободный радикал. Таким образом, в принципе можно идентифицировать свободные радикалы и измерять их в очень малых концентрациях (до 10~9 моль/л) при наиболее благоприятных условиях. Благодаря этому ЭПР получил широкое применение при исследовании реакций полимеров. Этот тип спектроскопии оказывает теперь большую помощь при детальных исследованиях таких процессов, как полимеризация, окисление — восстановление, деструкция, радиационные и фотохимические эффекты и даже вальцевание полимеров.[10, С.407]

При удлинении цепи сопряжения путем увеличения числа бензольных ядер, разделяющих углеродные атомы, несущие неспаренные электроны, бирадикальное состояние молекулы вследствие большей делока-лизаиии электронов становится более устойчивым, в этом случае в равновесной смеси содержится значительное число парамагнитных би-радикальных молекул:[3, С.411]

Положение линии ЭПР относительно магнитного поля определяется значением g-фактора. Для свободного электрона g-фактор есть отношение магнитного момента к механическому, равное 2,0023. Однако неспаренные электроны в радикалах не свободны, а связаны с другими атомами, входящими в состав радикала, и с другими электронами и поэтому чувствуют не только внешнее магнитное поле, но и внутреннее, локальное поле, обусловленное орбитальным движением электронов, орбитальным магнетизмом. Эти факторы изменяют величину g-фактора и положение линии ЭПР.[4, С.279]

Устойчивые бирадикалы в полимерной цепи возникают, по-видимому, в случае нарушения копланарности, когда два радикала оказываются в разных плоскостях и не могут взаимодействовать друг с другом. Каждый из этих радикалов стабилизирован за счет блока системы •сопряжения, в которую он входит. Так как частицы, содержащие неспаренные электроны, определяют парамагнетизм полимера, то они называются парамагнитными частицами. Число парамагнитных частиц не равно числу макромолекул, т. е. не все молекулы с сопряженной систе-мой связей переходят в бирадикальное (синглетное) состояние. Одна парамагнитная частица приходится на сотни и тысячи макромолекул.[3, С.412]

Особенность радиационной полимеризации заключается в том, что под влиянием облучения происходит не только распад молекул мономера, но и деструкция образовавшихся макромолекул. При малых дозах облучения эта деструкция проявляется в отщеплении от цепей макромолекул подвижных атомов (например, атомов водорода) или подвижных групп. В обоих случаях в макромолекуле вновь появляются неспаренные электроны, т. е. она вновь приобретает характер радикала. Этот процесс превращения инертной («мертвой») макромолекулы в реакционноспособ-ную («живую») сопровождается присоединением к ней молекул мономера, т. е. возникновением длинных боковых ответвлений (образование привитого полимера) или соединением с другой, ставшей реакционноспособной, «ожившей», макромолекулой (образование сшитого полимера).[1, С.97]

В отличие от первых двух требований, относящихся к термодинамике (увеличение степени компенсации в каталитической реакции, малая прочность промежуточных соединений), следующее важное требование касается скорости взаимодействия реагентов с катализатором; это взаимодействие должно происходить быстро, т. е. с малой энергией активации (такой случай изображен на рис. 18). Это особенно важно для гемолитических реакций, в которых разрыв электронной пары требует высокой энергии активации. Поэтому твердые катализаторы окислительно-восстановительных реакций (окисления, гидрогенизации, дегидрирования и т. п.) должны обладать радикальным характером, т. е. иметь неспаренные электроны.[2, С.100]

Таким образом, каждая парамагнитная частица находится не только во внешнем магнитном поле, но также и в локальном поле окружающих ее других парамагнитных частиц. Если парамагнитные частицы расположены в образце беспорядочно, то величины локальных полей для разных частиц различны. Обозначим среднюю величину разброса напряженности локальных полей ДНЯОК. Тогда условия резонанса начнут выполняться при напряженности внешнего магнитного поля Нви = Но- ДНяок, условие резонанса будет соблюдаться до Нв» = Н0 + ДНяок- Следовательно, диполь -дипольное взаимодействие приводит к "размыванию" энергетических уровней и, следовательно, к уширению спектра; его величина снижается обратно пропорционально кубу расстояния между ними. Другими словами, неспаренные электроны имеют различные значения g-фактора в зависимости от их химического окружения. В жидкостях вследствие усреднения, происходящего при быстром вращении молекул, можно наблюдать лишь одно значение g-фактора, близкое к его значению для несвязанного электрона. Однако в твердых телах в направлениях различных осей возможно появление различных значений g-фактора. Получить ценную информацию о величинах g-факторов можно с помощью жидких кристаллов, используемых в качестве растворителей.[4, С.280]

Гомолитические реакции являются свободнорадикальными, протекающими с участием в качестве активных промежуточных частиц свободных радикалов, т.е. частиц, содержащих неспаренные электроны, но не несущих заряда. Возможно также участие в реакциях ион-радикалов.[5, С.426]

Расщепление энергетических уровней электрона представляет собой увеличение числа энергетических уровней в результате воздействия на систему с неспаренными электронами магнитного поля. При наложении на неспаренные электроны магнитного поля число энергетических уровней возрастает от одного (Е = Е0) до[7, С.348]

ЭПР (electron spin resonance, Eloktronenspin-Kesorianz, resonance paramagnetique electroniqiie) — явление резонансного поглощения энергии электромагнитных волн парамагнитными частицами, помещенными в постоянное магнитное поле. Неспаренные электроны парамагнитных частиц ориентируются в постоянном магнитном поле так, что их собственный момент количества движения (спин) направлен либо по полю, либо против поля. Разность энергий этих двух состояний (или зеемановских уровней) есть энергия зеемановского расщепления gfiH, где Н — напряженность постоянного магнитного поля, Р — магнетон Бора, g — фактор спектроскопич. расщепления.[11, С.476]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Кирпичников П.А. Химия и технология мономеров для синтетических каучуков, 1981, 264 с.
3. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
4. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
5. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
6. Бартенев Г.М. Физика полимеров, 1990, 433 с.
7. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
8. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
9. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
10. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
11. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
12. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
13. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
14. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную