На главную

Статья по теме: Образующихся полимерных

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

При полимеризации бутадиена на кобальтовых системах число образующихся полимерных цепей во много раз превосходит число введенных в систему атомов кобальта, а М полимера мало изменяется с увеличением конверсии [43, 44]. Эти данные указывают на важную роль процессов передачи цепи в ходе полимеризации. Образующиеся на кобальтовых катализаторах полибутадиены (каучук СКД-2) характеризуются значительной разветвленностью, которая заметно возрастает с увеличением конверсии. ММР «кобальтовых» полибутадиенов является достаточно широким. М и ММР поддаются регулированию в широких пределах путем введения в реакционную смесь различных добавок, главным образом олефинов.[1, С.182]

Помимо кинетических измерений, очень важное значение имеет определение среднего молекулярного веса образующихся полимерных молекул. Последняя величина непосредственно связана со средней длиной полимерной цепи, т. е. с числом мономерных звеньев, входящих в полимерную молекулу. Так как средняя длина полимерных цепей определяется отношением скоростей роста и обрыва полимерных цепей, то определение этой величины позволяет получить ценные сведения об указанных элементарных реакциях.[13, С.10]

В качестве дисперсионной среды при полимеризации в эмульсии обычно используют воду, в качестве эмульгаторов — различные мыла. Реакция полимеризации может протекать в молекулярном растворе мономера в воде, на поверхности раздела капля мономера— вода, на поверхности или внутри мицелл мыла, на поверхности или внутри образующихся полимерных частиц, набухших в мономере.[3, С.14]

Образующийся свободный радикал инициирует дальнейший распад полисульфидных связей в полихлоропренполисульфиде. Процесс деструкции продолжается до образования стабильных связей R—S—R. В отсутствие тиурама образующиеся полимерные радикалы реагируют по двойной связи или а-метиленовой группой других полимерных молекул, вызывая структурирование полимерных цепей. Процессы деструкции под влиянием тиурам-полисуль-фидных связей происходят частично при щелочном созревании латекса и значительно более интенсивно при вальцевании или термопластикации, с одновременным взаимодействием образующихся полимерных радикалов с тиурамом по вышеуказанной схеме. Применение указанной системы регуляторов обеспечивает получение низкопластичного полимера, легко подвергающегося выделению из латекса методом зернистой коагуляции с образованием ленты на лентоотливочной машине, механически достаточно прочной в процессах формования, отмывки и сушки. Полимеры, полученные в присутствии серы и содержащие тиурам, легко пластицируются в процессе механической обработки, особенно в присутствии химически активных пластицирующих соединений (дифенилгуанидина совместно с меркаптобензтиазолом и др.) [24]. По мере израсходования тиурама или его разложения при нагревании или длительном хранении преобладают процессы структурирования.[1, С.374]

Роль среды в катионной полимеризации в основном сводится к двум эффектам: стабилизации образующихся заряженных частиц и изменению реакционной способности АЦ. В первом случае компенсируются энергетические потери на гетеролиз химических связей при образовании инициирующих ионов. Во втором случае изменение реакционной способности АЦ в различных средах происходит благодаря: а) влиянию полярности среды, б) ее сокаталитического действия, в) специфической сольватации, г) образованию комплексов с компонентами системы. Доминирующим, не считая химического действия как сока-тализатора, является полярность среды. Обычно в катионной полимеризации при увеличении полярности среды скорость процесса и молекулярная масса образующихся полимерных продуктов возрастают, что обусловлено увеличением скорости инициирования и уменьшением скорости обрыва цепи.[8, С.95]

В большинстве случаев при катионной полимеризации изобутилена реакция передачи цепи на мономер определяет степень полимеризации Р образующихся полимерных продуктов.[8, С.96]

Ряд экспериментальных факторов [246], в частности доминирование сопряженного алкилирования при понижении температуры, повышенные значения Мп фракций полиизобутилена, содержащих фенольные группы (по сравнению с несодержащими их образцами), различное влияние температуры на молекулярную массу образующихся полимерных продуктов с концевыми фенольными фрагментами и без них указывают на то, что конкуренция реакций роста и обрыва цепи, в том числе с участием фенолов, может протекать по-разному, в зависимости от типа АЦ (SnCl4, CH2C12, гептан, 203-263 К). Конечный результат представляет суперпозицию процессов, протекающих на всех АЦ.[8, С.107]

Концепция определяющей роли кислотно-основных взаимодействий в катион-ной полимеризации базируется на том, что рассматриваемый процесс представляет разновидность широкого класса катионных реакций в неводных средах со всеми присущими им основными признаками. В рамках этой концепции и в качестве дополнения к ней следует рассмотреть и другие особенности катионной полимеризации изобутилена, отличающие ее от реакций низкомолекулярных соединений и других реакций образования полимеров. В обобщенной формулировке достижения в регулировании катионной полимеризации изобутилена и конструировании полимерных молекул получили название макромолекулярной (или молекулярной) инженерии [25, 247]. Становление этого многозначительного термина произошло вначале при рассмотрении радикальной и анионной полимеризации, а в период 1975-80 гг. и в катионной полимеризации. Макромоле-кулярная инженерия означает регулируемое конструирование головных и хвостовых групп, повторяющихся звеньев, микроструктуры, ММ и ММР, природы разветвлений, частоты сетки, блок-, графт- и звездообразных структур. Большинство из этих положений применимо и для ПИБ. Элементами макромолекулярной инженерии являются конролируемые элементарные акты (инициирование, обрыв, передача) и «квазиживой» механизм роста цепей. Так как этой теме посвящены известные обзоры [25, 247], можно ограничиться лишь кратким рассмотрением проблемы. Реализация элементов макромолекулярной инженерии связана с двумя исходными моментами: направленным подбором комплексных каталитических систем, определяющих характер реакций инициирования, передачи и обрыва цепи, и близостью свойств исходного мономера и образующихся полимерных соединений из класса олефинов:[8, С.110]

Для рассмотренных выше эмульгаторов в этих условиях наблюдается резкое уменьшение степени дисперсности образующихся полимерных частиц [33, 128, 161] и даже получение самооседающих тонкодисперсных порошков, размер частиц которых 5- 10~s мм, или гранул размером до 1 мм (при изменении условий процесса).[10, С.36]

Одним из наиболее существенных результатов является влияние геометрии реакционного объема на молекулярные характеристики образующихся полимерных продуктов, при этом теплосъем оказывается неэффективным, а охлаждающие устройства способны лишь охлаждать реагирующие вещества, подходящие к месту ввода катализатора и мономера, что не является эффективным и достаточно действенным.[8, С.143]

В случае сополимеризации соединения, содержащего одну двойную связь, с полиеновым мономером (сшивающий агент) произойдет сшивание образующихся полимерных цепей, возникновение мостиков в тех местах, где находятся остатки полиенового мономера, что также приведет к образованию трехмерного полимера. При этом число мостиков будет тем больше, чем выше доля сшивающего агента в исходной мономерной смеси и длиннее цепи (т. е. чем больше их степень полимеризации хи). Другими словами, гелеобразова-ние, соответствующее возникновению одной поперечной связи на каждую линейную цепь, должно будет наступать тем раньше и критическая степень превращения ркр должна быть тем меньше, чем больше доля сшивающего агента и хм.[9, С.225]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
3. Кузнецов Е.В. Практикум по химии и физике полимеров, 1977, 256 с.
4. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
5. Виноградова С.В. Поликонденсационные процессы и полимеры, 2000, 377 с.
6. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
7. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
8. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
9. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
10. Лебедев А.В. Эмульсионная полимеризация и её применение в промышленности, 1976, 240 с.
11. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
12. Монаков Ю.Б. Панорама современной химии России Синтез и модификация полимеров, 2003, 356 с.
13. Багдасарьян Х.С. Теория радикальной полимеризации, 1966, 300 с.
14. Барретт К.Е. Дисперсионная полимеризация в органических средах, 1979, 336 с.
15. Симионеску К.N. Механохимия высокомолекулярных соединений, 1970, 360 с.
16. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
17. Коршак В.В. Прогресс полимерной химии, 1965, 417 с.
18. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.

На главную