На главную

Статья по теме: Параметров элементарной

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Вычисленный из параметров элементарной ячейки коэффициент молекулярной упаковки линейно уменьшается от 0,66 до 0,60 в кристаллических и от 0,58 до 0,46 для аморфных областей при изменении температуры от 20 до 320°С [57]. Такое различие указывает на большую подвижность молекул в аморфной фазе и большее температурное расширение аморфных областей.[7, С.42]

Для проведения структурное анализа полимеров чаще всего используют образцы в виде волокон или пленок, которые при съемке дают текстуррентгенограммы. Применение текстуррентге-нограмм для расшифровки структуры полимеров совершенно необходимо, так как дебаеграммы полимеров содержат обычно небольшое число линий, и определение параметров элементарной ячейки, а тем более структуры кристаллита практически невыполнимо. Образцы полимеров подвергают различным видам механической и термической обработку для того, чтобы максимально облегчить образование кристаллических областей, но при этом стараются не разрушить текстуру. Обычно образцы волокон или пленок Q натянутом состоянии прогревают на воздухе или в какой-либо жидкости. Получаемые текстуррентгенограммы содержат, как правило» пе более 50—70 рефлексов. Естественно, что при таком небольшом количестве экспериментальных данных задача является °чепь сложной. Правда, определение структуры полимера облегчается тем, что чаще всего химическое Строение звена цепи уже[3, С.107]

Для проведения структурного анализа полимеров чаще всего используют образцы в виде волокон или пленок, которые при съемке дают текстуррентгеноераммы. Применение текстуррентге-нограмм для расшифровки структуры полимеров совершенно необходимо, так как дебаеграммы полимеров содержат обычно небольшое число линии, и определение параметров элементарной ячейки, а тем более структуры кристаллита практически невыполнимо. Образцы полимеров подвергают различным видам механической и термической обработку для того, чтобы максимально облегчить образование кристаллических областей, но при этом стараются не разрушить текстуру. Обычно образцы волокон или пленок и натянутом состоянии прогревают на воздухе или в какой-либо жидкости. Получаемые текстуррентгенограммы содержат, как правило, не более 50—70 рефлексов. Естественно, что при таком небольшом количестве экспериментальных данных задача является очень сложной. Правда, определение структуры полимера облегчается тем, что чаще всего химическое строение звена цепи уже[6, С.107]

С повышением температуры амплитуды колебаний атомов или частей молекул увеличиваются и достигают критической величины, определяемой расстоянием между соседними частицами, что приводит к плавлению полимерных кристаллов и исчезновению кристаллической фазы. При плавлении полимера резко увеличивается свободный объем и ослабевают связи между цепями, хотя подвижность макромолекул как целого остается незначительной из-за большого внутреннего трения. Уменьшение коэффициентов теплопроводности кристаллических полимеров может быть объяснено также увеличением рассеяния в них тепловых волн вследствие изменения параметров элементарной ячейки и ослаблением межмолекулярного взаимодействия, связанного с увеличением расстояния между цепями. Уменьшению К кристаллических полимеров с повышением температуры может способствовать и рассеяние структурных фононов на границах аморфных и кристаллических областей, на границах раздела кристаллов и на границах раздела сферолитов. Кроме того, с повышением температуры уменьшается длина свободного пробега фононов, что также может приводить к уменьшению К.[2, С.257]

Плотность кристаллической фазы ркр (г/см3) аналитически определяют по формуле, в которую входят известные величины параметров элементарной ячейки пространственной решетки и химического строения макромолекулы полимера:[1, С.148]

Кристаллографические параметры, удельные объемы и их температурные коэффициенты некоторых полимеров в различном состоянии при 295К и нормальном давлении (124). Коэффициент линейного термического расширения параметров элементарной ячейки и сжимаемость при 293 К кристаллической решетки (156)[11, С.5]

Оказалось, что толщина межламелярных промежутков при нагреве до 129 °С увеличивалась в три раза. Столь существенные трансформации устройства поверхностных складок в толщинах чередующихся областей должны неизбежно сопровождаться изменениями и других характеристик: плотности; параметров элементарной ячейки; дефектности кристаллов; подвижности макромолекул; экспериментально это было зарегистрировано в матах и блочных образцах некоторых полимеров.[10, С.69]

Параметры кристаллической решетки составляют: а = 0,8025 нм, Ъ = 0,5999 нм, с = 1,5951 нм, а = у = 90° и р = 108,88°. Шестичленное кольцо плоское, максимальное отклонение от плоскости атомов Сз = 0,0012 нм, d = 0,0001 нм и Si = 0,002 нм. Атомы Si, 82, N и Q копланарны в пределах 0,0005 нм. Длина водородной связи NH...S составляет0,3347нм. Повторное определение [266] кристаллической и молекулярной структуры МВТ привело к следующим значениям параметров элементарной ячейки: а = 0,8014 нм, Ъ = 0,6004 нм, с = 1,5393 нм, а = у = 90°,[4, С.66]

Введение наполнителей в олигомер приводит к изменению характера зародышеобразования. Очевидно, это может быть обусловлено частичным разрушением существовавших в расплаве ассоциа-тов макромолекул, связанных между собой водородными связями, и образованием новых зародышей в адсорбционном слое. В качестве первого приближения можно предположить, что плотность упаковки макромолекул в адсорбционном слое приближается к плотности упаковки в кристалле. Исходя из параметров элементарной ячейки полиэтиленадипината, находим, что площадь, занимаемая одной макромолекулой на поверхности наполнителя, равна примерно 40 А2. Было найдено, что кристаллизация из высокоэластического состояния не наблюдается для систем; содержащих 20 масс. ч. графита и 5 масс. ч. аэросила. Общая поверхность наполнителей (на 1 масс, ч.) в этих системах составляет соответственно около 12 • 1018 и 10 • 1020 А2. Площадь поверхности, необходимой для связывания всех макромолекул олигомера, 'составляет около 1022 А2 для системы ОЭГА — 20 масс. ч. графита и ОЭГА — 5 масс. ч. аэросила, что значительно больше поверхности наполнителя, находящегося в системе.[8, С.70]

В табл. 2.1 приведены кристаллографические данные для различных кристаллических модификаций полимеров и удельный объем полимера в различных фазовых и агрегатных состояниях. При обозначении сингонии использованы следующие сокращения: гекса.— гексагональная, моно.— моноклинная, орто.— кубическая (орторомбическая), тетра.— тетрагональная, три.— триклинная, триг.— тригональная (ромбоэдрическая). Приставка п- перед названием сингонии означает «псевдо» (например, п-гекса.— псевдогексагональная). Обозначения пространственных групп даны в соответствии с принятой международной системой [14, 492]. Значения параметров элементарной ячейки кристалла а, и и с даны в 10~10 м. Как правило, параметр с соответствует периоду идентичности вдоль оси макромолекулы, за исключением случаев, когда ось макромолекулы совпадает с направлением другого параметра ячейки.[11, С.123]

Таблица 2.2. Коэффициент линейного термического расширения параметров элементарной ячейки и сжимаемость при 293 К кристаллической решетки [319, 347, 349, 404, 49), 557][11, С.156]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
4. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
5. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
6. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
7. Пашин Ю.А. Фторопласты, 1978, 233 с.
8. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
9. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
10. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.
11. Привалко В.П. Справочник по физической химии полимеров том 2, 1984, 330 с.

На главную