На главную

Статья по теме: Положительных результатов

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Попытки установить соответствие между испытаниями на разрыв и раздир не дали положительных результатов. Различие возникает из-за фактического существования дефектов структуры, их случайного распределения по форме и размерам в объеме материала. Более того, отмечается повышенная чувствительность сопротивления раздиру к рецептурным и технологическим факторам (степени вулканизации, пластикации каучука, нарушениям в режиме смешения и т.д.). Корреляция между характеристической энергией раздира Н и удельной[5, С.538]

Первые сообщения о применении кислорода в процессе дегидрирования олефиновых углеводородов появились в 1934—35 гг. [1, 2]. Влияние кислорода на каталитическое дегидрирование н-бутенов на алюмохромовых катализаторах подробно исследовалось Б. А. Афетовым в конце 1940-х годов [3]. Однако эти попытки улучшения показателей дегидрирования за счет добавок кислорода не дали положительных результатов. И только разработка новых эффективных катализаторов позволила подойти к промышленной реализации процессов окислительного дегидрирования.[1, С.682]

В качестве примера комплексного подхода рассмотрим поэтапную схему проверки эффективности антиоксидантов (табл. 15.3) для бутадиен-стирольного каучука (БСК). С целью выбора оптимальной стабилизирующей системы сравнение ведется с эффективностью стандартного антиоксиданта нафтама-2 в случае окрашенных АО и полигарда в случае неокрашенных при дозировке стандартных антиоксидантов 1 % мае. Оценка проводится поэтапно; к следующему этапу оценки эффективности переходят в случае положительных результатов предыдущего этапа.[5, С.429]

Реакция при методе прямого синтеза может идти и без катализатора, но тогда она протекает значительно медленнее, а основными продуктами являются галогенсиланы с высоким содержанием галогена (SiHal4, SiHHal3, RSiHalg). В присутствии же катализатора процесе идет с хорошей скоростью и с высокими выходами основных продуктов. В качестве катализаторов прямого синтеза проверялись различные металлы, например никель, хром, платина, сурьма, свинец, алюминий, цинк, железо, серебро, медь. Некоторые из них (Ni, Cr, Pt) не дали положительных результатов, другие (Al, Zn) смещали реакцию в направлении образования высокоалкилирован-ных соединений. Хорошие результаты получаются при использовании в качестве катализатора меди (в синтезе алкилхлорсиланов) и меди или серебра (в синтезе фенилхлорсиланов).[6, С.30]

Достоинства бевдорновых способов изготовления рукавов: возможность получения изделий практически любой длины, ны-сокан производительность, отсутствие дорноного хозяйства, возможность осуществления непрерывных процессов нулканизации, более высокая степень механизации и автоматизации, что позволяет более точно выдерживать заданные технологические параметры процесса. Однако качество руканон оказывается несколько хуже, чем при изготовлении па дорнах. Кроме тою, применение достаточно дефицитного и токсичного свинца для обкладки рука вон при вулканизации усложняет ведение процесса. Попытки замены свинца термопластичными полимерными материалами с высокими температурами размягчения пока не дали положительных результатов.[3, С.236]

Кроме указанных структур по данным рентгеноструктурного анализа [7, 11] и по результатам исследования методом ИКС [12] в полихлоропрене содержатся цис- и транс-изомеры со звеньями 1,4-1,4, причем соотношение этих форм зависит в основном от температуры полимеризации. Как было показано по данным ИКС, в полимере хлоропрена, полученном при 40 °С, содержание транс-1,4-звеньев составляет 86,5%, цис-\,4- 10%; 1,2- 1,6% и 3,4- 1%. С понижением температуры полимеризации до —40 °С содержание транс-конфигураций составляет 94%, цис- 5%, звеньев 1,2- 0,9% и 3,4- 0,3%. При повышении температуры полимеризации до 100 °С содержание транс-звеньев снижается до 71%, а цис- увеличивается до 13%; также возрастает содержание звеньев 1,2- и 3,4-до 2,4% каждого [12]. Симбатно понижению температуры полимеризации и соответственно увеличению содержания транс-конфигураций происходит повышение содержания кристаллической фазы в полихлоропрене. Попытки получения цмс-1,4-полихлоропрена путем применения комплексных металлорганических соединений, а также стереоспецифических катализаторов типа Циглера — Нат-та, проведенных как в СССР, так и за рубежом [13, 14], не дали положительных результатов и привели к образованию нерастворимых, частично циклизованных полимеров с меньшим содержанием хлора, чем в полихлоропрене. Иным путем был синтезирован ц«с-1,4-полихлоропрен из г{Ш>2-трибутилолово-1,3-бута-диена [15].[1, С.370]

Резиносмешение — сложный физико-химический процесс. Рассмотрим его механические аспекты с целью обоснования конструкции рабочих органов резиносмесителя в том состоянии, какими они представляются в настоящее время. До создания первых машин, предназначенных исключительно для приготовления резиновых смесей, т. е. резиносмесителей (в 1920 г.), резиновые смеси изготавливались на вальцах (см. гл. 5). В качестве смесительного оборудования вальцы применяются и в настоящее время. При этом имеет место последовательное осуществление ряда операций. На вальцах сначала обрабатывают каучук путем многократного его пропуска через узкий зазор между валками, вращающимися навстречу друг другу с разными скоростями. При этом каучук становится более пластичным, чем до вальцевания, и обволакивает передний валок вальцев тонким слоем. Затем в рабочую зону вальцев постепенно и равномерно по длине валка вводят компоненты (например, технический углерод), которые, проходя с каучуком через узкий зазор, подвергаются деформациям сжатия и сдвига. Происходит внедрение и распределение компонентов в каучуковой среде. Порядок введения компонентов зависит от свойств каучука и рецептуры резиновой смеси и с точки зрения механики не столь важен. Вальцы являются машиной открытого типа, и одновременная подача всех компонентов в рабочую зону не дает положительных результатов, сыпучие компоненты частично просыплются в поддон, а жидкие — стекут. Вот почему необходима постепенная подача ингредиентов, которая неизбежно увеличивает продолжительность всего цикла смешения. Во время процесса вальцевания периодически осуществляется подрезка слоя резиновой смеси на переднем валке, закручивание ее в рулон и заправка этого рулона опять в рабочую зону вальцев. Особенностью работы вальцев является то, что при определенных условиях часть резиновой смеси циркулирует в верхней части рабочей зоны и не пропускается через зазор, т. е. ту часть, где имеет место наиболее интенсивная обработка смеси. Закатка смеси в рулон снижает объем смеси, -находящейся в рабочей зоне, и в конечном счете приводит к тому, что смесь вся пропускается через зазор.[7, С.97]

На основании положительных результатов лабораторных испытаний проводились опытно-промышленные испытания ТМК в автокамерной смеси 5НК-203-001. В процессе приготовления резиновой смеси технологических трудностей не наблюдалось. Выгрузку смеси из резиносмесителя осуществляли по времени при температуре 112°С.[9, С.383]

На основании положительных результатов лабораторных испытаний проводились опытно-промышленные испытания гранулированной композиции в автокамерной резиновой смеси 2НК-203-001. В процессе приготовления резиновой смеси технологических трудностей не наблюдалось. Выгрузку смеси из резиносмесителя осуществляли по времени при температуре 112°С.[10, С.192]

Исторически сложилось экспериментально мало обоснованное представление, что сшивание ХСКЭП протекает по двойным связям, которые образуются при отщеплении хлористого водорода. Исходя из этих представлений, высказано предположение, что удовлетворительное сшивание наблюдается в том случае, когда содержание хлора в исходном сополимере выше 5—8%. Однако введение соединений аминного типа с целью активирования дегид-рохлорирования положительных результатов не дает.[8, С.195]

Н6+[МеХп]5 не дает, как правило, положительных результатов. Предполагается,[4, С.70]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Геллер Б.Э. Практическое руководство по физикохимии волокнообразующих полимеров, 1996, 432 с.
3. АверкоАнтонович Ю.О. Технология резиновых изделий, 1991, 351 с.
4. Сангалов Ю.А. Полимеры и сополимеры изобутилена, 2001, 384 с.
5. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
6. Андрианов К.А. Технология элементоорганических мономеров и полимеров, 1973, 400 с.
7. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
8. Донцов А.А. Хлорированные полимеры, 1979, 232 с.
9. Ильясов Р.С. Шины некоторые проблемы эксплуатации и производства, 2000, 576 с.
10. Мухутдинов А.А. Экологические аспекты модификации ингредиентов и технологии производства шин, 1999, 400 с.
11. Сангалов Ю.А. Полимеры и сополимеры бутилена, Фундаментальные проблемы и прикладные аспекты, 2001, 384 с.
12. Донцов А.А. Процессы структурирования эластомеров, 1978, 288 с.
13. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
14. Наметкин Н.С. Синтез и свойства мономеров, 1964, 300 с.
15. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
16. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6, 1961, 854 с.
17. Петров Г.С. Технология синтетических смол и пластических масс, 1946, 549 с.

На главную