На главную

Статья по теме: Процессов деформации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Для понимания процессов деформации наполненных полимеров большое значение имеет изучение деформируемости при больших напряжениях. Для этого случая на примере наполненных стеклянными бусинками композиций поливинилхлорида было установлено [278], что выше некоторого критического значения удлинения начи-[9, С.156]

Релаксационный характер процессов деформации полимеров приводит к тому, что границы между релаксационными (физическими) состояниями определяются не только температурой, но и прилагаемой нагрузкой (значением, скоростью и длительностью приложения). Поэтому релаксационные состояния называют также деформационными состояниями. В зависимости от характера нагрузки один и тот же полимер при данной температуре может вести себя как упругое, высокоэластическое или пластическое (текучее) тело. При действии «быстрых» сил -ударной нагрузки - главным образом проявляется упругость, а в случае «медленных» сил - текучесть. Полимер, яааяющийся при данной температуре высокоэластическим, при большой скорости приложения кратковременных нагрузок ведет себя как упругое тело (явление механического стеклования), а при длительно действующей силе обнаруживает текучесть. Жидкий полимер может в определенных условиях проявить высо-коэластичность и даже упругость.[4, С.156]

Экспериментальное изучение процессов деформации вязких и вязкоупругих (т. е. обладающих и обратимыми деформациями; см. [49]) систем как в установившемся, так и в переходных режимах производят либо при постоянной скорости деформации, либо при постоянном напряжении сдвига. Для математического описания наблюдаемых кривых течения используются самые различные выражения. Так, в инженерной практике получила, широко? распространение формула Оствальда — де-Вила (V. 12). Область малых напряжений сдвига удовлетворительно описывается, например, формулой Айзеншитца *[1, С.172]

В простейших случаях изучение процессов деформации вязко-упругих систем и перехода их к установившемуся режиму течения производится при постоянном напряжении сдвига или при постоянной скорости сдвига. Для описания процесса течения аномально вязких систем используются различные зависимости. В инженерной практике наибольшее распространение получила формула Оствальда — де Вила (6.1).[2, С.152]

Дальнейший термодинамический анализ высокоэластических деформаций делается для квазиравновесных процессов деформации. В этом случае применимы уравнения, аналогичные приведенным выше. Что касается неравновесных процессов деформации, то их анализ относится к релаксационным явлениям и, в частности, к термодинамике необратимых процессов в полимерах.[2, С.63]

Макромолекулы линейных полимеров характеризуются высокой степенью асимметрии. Поэтому отдельные участки вытянутой молекулярной цепи настолько удалены друг от друга, что взаимное влияние становится ничтожно малым. Вследствие этого некоторые участки молекулярной цепи при растворении (когда подвижность и гибкость цепи возрастает) и при процессах деформации полимера ведут себя как кинетически самостоятельные единицы. Такие участки молекулярной цепи называют сегментами. Размер участка молекулярной цепи, проявляющего кинетическую независимость (сегмента), не является постоянной и зависит от гибкости молекулярной цепи и условий, в которых находится полимер (температура и концентрация раствора, природа растворителя, температура, величина и скорость приложения нагрузки при деформации). Благодаря подвижности отдельных сегментов молекулярной цепи при их тепловом движении макромолекула непрерывно меняет свою форму (конформацию), и так как число возможных кон-формаций изогнутой молекулы очень велико, а вытянутая только одна, то макромолекула большую часть времени имеет изогнутую форму, что очень важно для понимания особенностей свойств растворов и процессов деформации полимеров.[3, С.44]

Все уравнения справедливы для равновесных процессов деформации макромолекулы. Неравновесные процессы в полимерах рассматриваются в других разделах книги.[5, С.161]

С точки зрения анализируемых в данной работе процессов деформации и рекристаллизации при отжиге молшо объяснить обратимый характер деформации сферолитов полиэтилена [21].[11, С.350]

Объяснение этого может быть дано исходя из представлений о двух типах процессов деформации и релаксации полимеров, экспериментально хорошо показанных на эфирах целлюлозы в работе Каргина, Козлова и Зуевой [2].[11, С.64]

Релаксация напряжения и ползучесть относятся к квазистатическим режимам деформации, если скорость процессов деформации мала. В этом случае теория линейной вязкоупругости приводит к следующим формулам.[5, С.210]

В подавляющем большинстве процессов переработки термопластичных и термореактивных материалов основной рабочий фон составляют механические явления, возникающие вследствие процессов деформации полимерной среды. Поэтому первым шагом в построении теории переработки полимеров является создание методов количественного описания механики процессов переработки, учитывающих основные особенности полимерного материала.[10, С.9]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
4. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
5. Бартенев Г.М. Физика полимеров, 1990, 433 с.
6. Бекин Н.Г. Оборудование и основы проектирования заводов резиновой промышленности, 1985, 505 с.
7. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
8. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
9. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
10. Торнер Р.В. Основные процессы переработки полимеров Теория и методы расчёта, 1972, 455 с.
11. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.

На главную