На главную

Статья по теме: Разрушение химических

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В общем случае разрушение химических связей, вызывающее химическую релаксацию напряжения в резинах, может происходить под влиянием тепла (при высоких температурах), под влиянием тепла и кислорода, а также под влиянием катализаторов. Как показали Догадкин и Тарасова48, в вулканизатах НК и БСК уже при температуре 70 °С в среде азота происходит разрыв поперечных полисульфидных связей. При более высоких температурах с заметной скоростью разрываются также связи С—S—С и С—С. При 130 °С константа скорости химической релаксации вулканизатов НК, содержащих преимущественно полисуль-фщцие поперечные связи*, примерно в 10—30 раз больше, чем вулкшизатов, содержащих преимущественно поперечные связи С—S—С, а также С—С. Для вулканизатов бутадиен-стирольного каучука разница в константах скоростей химической релаксации колеблется в пределах от 6 до 250.[5, С.252]

Согласно этим представлениям разрушение химических свя-. зей и нарушение межмолекулярного взаимодействия происходит вследствие флуктуации тепловой энергии. Прикладываемое внешнее напряжение увеличивает вероятность преодоления связей между элементами структуры. Вследствие того что увеличение частоты разрывов связей между элементами структуры сопровождается увеличением скорости разрыва образца в целом, повышение температуры, как и возрастание напряжения, ускоряет разрушение полимера [421, с. 738].[6, С.229]

Помимо рассмотренных наиболее простых механических воздействий на полимеры, приводящих к развитию в них химических реакций, существует и ряд других видов воздействий, вызывающих механическое разрушение химических связей в полимерах, детальное рассмотрение которых содержится в монографиях [11, 12, 13, 15, 16]. Сюда относятся процессы дробления и измельчения, действие ультразвука, высоких давлений, ударные волновые воздействия и др.[1, С.254]

Необходимо обратить внимание еще на одно очень важное обстоятельство. Межмолекулярные связи, в отличие от химических связей, являются достаточно слабыми. Энергия, которую необходимо затратить для их разрушения, приблизительно на порядок меньше энергии, которую необходимо затратить на разрушение химических связей. Напомним, что энергия разрыва химических связей составляет несколько десятков ккал/моль, а энергия разрыва межмолекулярной связи составляет всего лишь несколько ккал/моль. Наиболее[3, С.120]

Если такого рода добавки вводятся в равновесный однофазный раствор, то кривая равновесия сдвигается в сторону более высоких температур, и система оказывается находящейся ниже критической точки полного взаимного смешения. В -результате происходит распад на две фазы, который принимает форму или студнеобразования, или выпадения рыхлого хлопьевидного осадка. Разрушение химических связей между молекулами полимера и активной добавки приводит к восстановлению однофазной системы.[7, С.51]

Студни с химическими связями между элементами структуры (ограниченно набухшие сетчатые полчмсры) представляют собою однофазную термодинамически устойчивую систему, содержание низкомолекулярной жидкости в которой при данных температуре и давлении зависит от природы жидкости и полимера, а также от частоты его сетки. Они обладают высоким пределом текучести, соизмеримым с напряжением, при котором происходит разрушение химических связей. Под действием большого напряжения сдвига в таких студнях происходит одновременный разрыв химических связей в основных цепях и между цепями, т. е, механическая деструкция полимера. Нагревание этих студней выше определенной температуры приводит, вследствие термической деструкции, к разрушению всей системы,[2, С.427]

Студни с химическими связями между элементами Структуры (ограниченно набухшие сетчатые полчмсры) представляют собою однофазную термодинамически устойчивую систему, содержание низкомолекулярной жидкости в которой при данных температуре и давлении зависит от природы жидкости и полимера, а также от частоты его сетки. Они обладают высоким пределом текучести, соизмеримым с напряжением, при котором происходит разрушение химических связей. Под действием большого напряжения сдвига в таких студнях происходит одновременный разрыв химических связей в основных цепях и между цепями, т. е. .механическая деструкция полимера. Нагревание Этих студней выше определенной температуры приводит, вследствие термической деструкции, к разрушению всей системы.[4, С.427]

где Uq—ya=Ua. Смысл выражения (VIII.7) и отдельных величин, входящих в него, становится ясным, если учесть, что разрушение химических связей и нарушение межмолекулярного взаимодействия происходят вследствие флуктуации тепловой энергии. Известно, что частота колебаний атомов в твердом теле около положения равновесия составляет 1012—1013 с-1. В результате хаотического теплового движения время от времени на каждом атоме сосредото-[8, С.218]

где l/o—ya=Ua. Смысл выражения (VIII.7) и отдельных величин, входящих в него, становится ясным, если учесть, что разрушение химических связей и нарушение межмолекулярного взаимодействия происходят вследствие флуктуации тепловой энергии. Известно, что частота колебаний атомов в твердом теле около положения равновесия составляет 1012—1013 с~'. В результате хаотического теплового движения время от времени на каждом атоме сосредото-[9, С.218]

где U зависит от напряжения (уменьшается линейно с ростом о), a UQ не зависит от напряжения и имеет смысл энергии активации процесса разрушения ненапряженного полимера. Разрушение химических связей в ненапряженном полимере может произойти только под действием тепловой энергии и поэтому t/0 должно быть тождественно энергии активации процесса термодеструкции UD- Определенные путем экстраполяции значения 110 совпали с энергией активации процесса термодеструкции. Так, для поликапроамида U0 = = 188 кДж/моль, a L/D=180 кДж/моль; для поливинилхлорида ?/о = 146, а ?/о=134; для полипропилена ?У0=234, a UD— = 236 кДж/моль и т. п. Видно, что значения энергии активации процесса разрушения ненапряженного полимера и энергии активации термодеструкции весьма близки. Это доказывает справедливость молекулярно-кинетических представлений, лежащих в основе кинетической теории прочности.[1, С.203]

Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
4. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
5. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
6. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
7. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
8. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
9. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.

На главную