На главную

Статья по теме: Результате ориентации

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

В результате ориентации макромолекул мы получили увеличение разрывной прочности при одновременном снижении разрывного удлинения. По сравнению с пределом текучести исходного полимера выигрыш полный: увеличилась прочность при разрыве по сравнению с от и удлинение при разрыве по сравнению с вт. Важно также то, что в результате ориентации работа разрушения оказывается много больше работы упругой деформации исходного образ-ла (до предела текучести). Соответствующие площади под кривыми показаны на том же рисунке 12.16, а.[4, С.192]

В результате ориентации в полимере возникает текстура, обусловливающая анизотропию свойств полимерного материала. У фибриллярных полимеров обычно существует аксиальная (осевая) текстура. В этом случае направление осей кластеров и макромолекул более или менее совпадает с направлением оси текстуры (оси волокна). У природных волокон аксиальная ориентация приобретается в ходе биосинтеза. У химических (искусственных и синтетических) волокон аксиальная ориентация может быть достигнута их вытягиванием - одноосным ориентированием. Пленки обычно получаются неориентированными, но при формовании пленок можно применять двухосное ориентирование. Под действием растягивающей силы макромолекулы изменяют свою конформацию, распрямляются и сближаются, в результате чего увеличивается межмолекулярное взаимодействие. Некоторые элементы надмолекулярной структуры могут распадаться, и образуются новые. Ориентирование в аморфном полимере носит характер фазового перехода - направленная кристаллизация.[7, С.142]

Слагаемое Цо2/(3&7) характеризует ориентационную поляризо-ванность, возникающую в результате ориентации молекул под действием локального электрического поля. Условие Р0р=й=0 выполняется при но?=0 и 7=7^=00. Уравнение (7.1) чаще используют в форме, получающейся при умножении обеих его частей на молярный объем M/d. В этом случае оно определяет поляризован-ность[3, С.175]

Слагаемое p|/3feT представляет собой ориента^ционную поляризуемость, возникающую, в результате ориентации молекул под действием локального электрического поля. Условие Рор ф 0 выполняется при цо Ф 0 и Т Ф оо. Уравнение (VII. 1) чаще исполь-яуют в форме, получающейся при умножении обеих его частей на мольный объем М/d; в этом случае оно определяет поляризацию Р[2, С.233]

Очевидно, размеры отдельных кристаллитов меньше длины све товой волны, потому что полимер и в кристаллическом состоянии сохраняет высокую прозрачность. В результате ориентации полимера значительно повышается его прочность, но ухудшается прозрачность.[1, С.427]

Изложенные выше основы кинетической теории прочности относятся к полимерам, которые мало деформируются перед разрушением. Это полимеры, надмолекулярная структура которых в момент разрушения сохраняется такой же, как в исходном образце, а не меняется кардинально в результате ориентации, как в эластомерах. Изменение надмолекулярной структуры в эластомерах, сильно деформирующихся к моменту разрушения, приводит к тому, что зависимость долговечности от напряжения в них подчиняется закономерностям, отличающимся от тех, что описываются уравнением Журкова.[4, С.205]

Наличие в ПВ'С двух фаз (кристаллической и аморфной) оказывает существенное влияние на поведение полимера при 'нагревании. ПВС не имеет резко выраженной точки плавления, а плавится в области температур от 220 до 240°С. Это может быть объяснено тем, что первоначальная кристаллизация ПВС в процессе его получения происходит при температуре ниже" Тс полимера в результате ориентации наиболее близко расположенных цепей. Дальнейшая кристаллизация наблюдается при нагревании ПВС за счет роста исходных кристаллов и образования новых. Следовательно, существуют термодинамически разные кристаллиты, имеющие различные формы. Кроме того, при Тал происходит незначительное разложение ПВС 'вследствие потери воды. Температура плавления ПВС, определенная с помощью дифференциально-термического анализа и равная 228 °С, считается ее средним значением [14,с. 169].[9, С.107]

Известны два основных метода ориентации труб: раздув сжатым воздухом и калибрование через дорн. По первому методу экструднрованную калиброванную трубу пропускают через обогреваемый жидкостью фланец и раздувают сжатым воздухом, а затем охлаждают [19]. Процесс практически не отличается от показанного на рис. 11.2. Второй метод, основанный на использовании дорна [20], позволяет осуществлять ориентацию труб при более низких температурах. В результате ориентации прочность полипропиленовых труб повышается более чем на 100%, причем по температурной усадке ориентированные трубы близки к неориентированным [20]. Ориентация дает возможность вдвое уменьшить толщину стенок труб, т. е. сэкономить 50% материала. Вместе с тем ориентированные трубы способны выдерживать большее напряжение. Технологические исследования в этом направлении пока еще не завершены.[5, С.285]

Молекулярный механизм течения полимера можно представить следующим образом. Перемещение сегментов под действием деформирующей силы приводит к изменению формы молекулярных клубков, которые вытягиваются в направлении действия силы. Деформация клубков приводит к разрушению части узлов флуктуацион-ной сетки (узлы зацеплений и ассоциаты сегментов). Сетка потому и называется ф|луктуационной, что ее узлы, распавшиеся в одном месте, затем восстанавливаются в другом. Если деформацию осуществлять бесконечно медленно, так чтобы успевали релаксиро-вать возникающие упругие напряжения, то течение происходило бы при практически неизменной надмолекулярной структуре. При определенной скорости течения надмолекулярная структура изменяется в результате ориентации макромолекул в процессе течения, однако она восстанавливается полностью после снятия действующих напряжений.[4, С.163]

В результате ориентации полимер приобретает более или менее ярко выраженное фибриллярное строение, что хорошо видно в элект-[10, С.467]

Из этих данных видно, что в результате ориентации существенно возрастает разрывная прочность и уменьшается величина относительного удлинения волокна.[5, С.83]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Амброж И.N. Полипропилен, 1967, 317 с.
6. Розенберг М.Э. Полимеры на основе винилацетата, 1989, 175 с.
7. Азаров В.И. Химия древесины и синтетических полимеров, 1999, 629 с.
8. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.2, 1983, 480 с.
9. Розенберг М.Э. Полимеры на основе винилацетата, 1983, 175 с.
10. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
11. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
12. Липатов Ю.С. Физическая химия наполненных полимеров, 1977, 303 с.
13. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
14. Северс Э.Т. Реология полимеров, 1966, 199 с.
15. Вендорф Д.N. Жидкокристаллический порядок в полимерах, 1981, 352 с.
16. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
17. Тюдзе Р.N. Физическая химия полимеров, 1977, 296 с.
18. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
19. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
20. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
21. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
22. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
23. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
24. Саундерс Х.Д. Химия полиуретанов, 1968, 471 с.

На главную