На главную

Статья по теме: Разрывного удлинения

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Степень вытяжки не определяет однозначно значение прочности и разрывного удлинения полимера. Одной и той же степени вытяжки могут соответствовать различные значения прочности, и, наоборот, одна и та же прочность может быть получена при различных степенях вытяжки. Средняя степень ориентации, определяемая двойным лучепреломлением, является более точной характеристикой ориентированного полимера. С другой стороны, прочность и разрывное удлинение не определяются одним двулучепреломлением. Образцы с одинаковым двулучепреломлением, ориентированные в различных условиях, могут разорваться на разных стадиях растяжения, хотя до момента разрыва одного из образцов диаграммы растяжения их полностью совпадают. Таким образом, по степени ориентации невозможно однозначно определить прочностные характеристики ориентированных полимеров. Однозначную связь прочности и разрывных удлинений со строением ориентированного полимера удается установить лишь в том случае, если можно учесть два параметра — среднюю степень ориентации звеньев макромолекул и число цепей молекулярной сетки в единичном объеме, так как[2, С.327]

В результате ориентации макромолекул мы получили увеличение разрывной прочности при одновременном снижении разрывного удлинения. По сравнению с пределом текучести исходного полимера выигрыш полный: увеличилась прочность при разрыве по сравнению с от и удлинение при разрыве по сравнению с вт. Важно также то, что в результате ориентации работа разрушения оказывается много больше работы упругой деформации исходного образ-ла (до предела текучести). Соответствующие площади под кривыми показаны на том же рисунке 12.16, а.[4, С.192]

Окисление полипропилена сопровождается снижением молекулярного веса и, как следствие, ухудшением механических показателей, в частности разрывного удлинения и предела текучести материала. При интенсивной окислительной деструкции полимер становится хрупким и не выдерживает даже небольших механических нагрузок.[6, С.190]

Естественно, что сегментированные эластомеры могут иметь трехмерную структуру. Однако увеличение концентрации химических поперечных связей неизбежно уменьшает взаимодействие в жестких сегментах, а последнее влечет за собой снижение твердости, механической прочности и разрывного удлинения. Особенности пространственной структуры этих полимеров определяют поведение их при воздействии температуры. При повышенных температурах сетка разрушается, и эластомеры проявляют все признаки термопластичности.[1, С.544]

Хотя современные аппараты для ускоренного светового старения оснащены лампами со спектром излучения, близким к спектру солнечного света, естественное старение на солнце продолжает оставаться самым надежным методом оценки светостойкости полимерных материалов. За ходом атмосферного старения обычно следят по снижению разрывного удлинения образцов,[6, С.189]

В результате привитой полимеризации подавляются или даже полностью устраняются такие отрицательные свойства полипропилена, как недостаточная стойкость к термоокислительной и световой деструкции, низкая гидрофильность, плохая окрашиваемость, малая ударная прочность в области температур ниже 0° С, значительное падение прочности и повышение разрывного удлинения в условиях повышенной температуры, а в случае волокнистого материала, кроме того, улучшаются качество на ощупь (гриф) и перерабатываемое^ в изделия. Отсюда понятно, что модификация полипропилена, в особенности предназначенного для изготовления изделий с большой поверхностью (например, пленок и волокон), приобретает важное техническое значение.[6, С.141]

Большое значение для повышения прочности нити из искусственного или синтетического волокна, предназначенной для изготовления прочных технических тканей, имеет вытягивание этих нитей. Вытягивание вискозной нити на 60 — 100% производится в свежесформированном состоянии; для этого служат специальные вытяжные приспособления, которые установлены непосредственно на прядильной машине. При получении полиамидной и полиэфирной кордной нити дополнительное вытягивание сформованного волокна производится иногда при повышенной температуре на крутильно-вытяжных машинах. Степень вытягивания полиамидного волокна достигает 300 — 400% . В результате вытягивания волокна происходит значительное повышение степени продольной ориентации молекул в волокне, что приводит к резкому повышению прочности волокна, снижению разрывного удлинения, к повышению начального модуля, к повышению теплостойкости волокна и его плотности, а также к снижению гигроскопичности.[5, С.209]

Рис. 5.30. Зависимость разрывного удлинения L от кратности вытяжки волокон с различной степенью предориентацип. Обозначения см. рис. 5.29[7, С.126]

Коэффициенты изменения разрывного удлинения нитей растут с по-.вышением температуры, достигают максимума при температурах 160— 180° С и затем снижаются. Характер их расположения может быть выражен уравнениями[15, С.536]

Величины разрывной нагрузки и разрывного удлинения исследованных нитей различны, но коэффициенты изменения этих свойств в зависимости от длины образца, температуры окружающей среды, скорости растяжения близки между собой для полиамидных и полиэфирных нитей и нами усреднены.[15, С.532]

Смоляные вулканизаты СКЭПТ имеют сравнительно невысокие значения разрывного удлинения после старения. У них также наблюдается падение выносливости при многократных деформациях. Поэтому для промышленного применения наибольший интерес представляют теплостойкие и озоностойкие резины, полученные на основе комбинации СКЭПТ и бутилкаучука. Из данных, приведенных в табл. 23, в"идно, что при уменьшении содержания бутил-каучука и увеличении содержания СКЭПТ повышаются модули упругости, прочность, эластичность и сопротивление разрыву после старения.[10, С.169]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Гармонов И.В. Синтетический каучук, 1976, 753 с.
2. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
3. Иванов В.С. Руководство к практическим работам по химии полимеров, 1982, 176 с.
4. Кулезнев В.Н. Химия и физика полимеров, 1988, 312 с.
5. Белозеров Н.В. Технология резины, 1967, 660 с.
6. Амброж И.N. Полипропилен, 1967, 317 с.
7. Петухов Б.В. Полиэфирные волокна, 1976, 271 с.
8. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
9. Ряузов А.Н. Технология производства химических волокон, 1980, 448 с.
10. Шварц А.Г. Совмещение каучуков с пластиками и синтетическими смолами, 1972, 224 с.
11. Шур А.М. Высокомолекулярные соединения, 1981, 656 с.
12. Барамбойм Н.К. Механохимия высокомолекулярных соединений Издание третье, 1978, 384 с.
13. Гуль В.Е. Структура и прочность полимеров Издание третье, 1978, 328 с.
14. Папков С.П. Физико-химические основы переработки растворов полимеров, 1971, 372 с.
15. Ребиндер П.А. Проблемы физико-химической механики волокнистых и пористых дисперсных структур и материалов, 1967, 624 с.
16. Уорд И.N. Механические свойства твёрдых полимеров, 1975, 360 с.
17. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
18. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
19. Бартенев Г.М. Прочность и механика разрушения полимеров, 1984, 280 с.
20. Бовей Ф.N. Действующие ионизирующих излучений на природные и синтетические полимеры, 1959, 296 с.
21. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
22. Феттес Е.N. Химические реакции полимеров том 2, 1967, 536 с.
23. Михайлов Н.В. Основы физики и химии полимеров, 1977, 248 с.
24. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
25. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
26. Кулезнёв В.Н. Основы физики и химии полимеров, 1977, 248 с.
27. Гальперн Г.Д. Химические науки том 3, 1959, 598 с.
28. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
29. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.

На главную