На главную

Статья по теме: Разрывных удлинений

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Измерения прочности и разрывных удлинений дают лишь косвенные указания на характер радиационных эффектов. Если превалирует сшивание, прочность часто возрастает до максимума (см. гл. VIII), а затем снова снижается, после чего снова наблюдается возрастание, когда плотность пространственной сетки становится столь высокой, что полимер переходит в твердое, стеклообразное состояние. Начальный максимум может, однако, и отсутствовать, и постепенный рост плотности пространственной сетки может часто сопровождаться постепенным уменьшением прочности. Разрывное удлинение тоже обычно убывает с ростом числа мостиков, но в настоящее время этим измерениям нельзя дать исчерпывающей интерпретации.[5, С.76]

Измерения модуля, прочности и разрывных удлинений пластмасс еще труднее поддаются точной интерпретации, чем подобные измерения для резин, так как здесь мы обычно находимся еще дальше от равновесных условий. В этих случаях желательно производить измерения при температурах, превышающих в достаточной степени температуру стеклования, или температуру плавления кристаллов (если полимер находится обычно в кристаллическом состоянии). Такие измерения при повышенных температурах возможны, если им не препятствует окисление или другие химические реакции.[5, С.76]

Исследования разброса прочности и разрывных удлинений резки из НК и синтетических каучуков, полученных в различных условиях, показали, что статистический характер прочности связан с неоднородностью структуры вулканиза-ционных сеток: разброс показателя прочности у резин из холодных пластикатов СКС был меньше, чем у резин из горячих, у резин в оптимуме вулканизации — меньше, чем у перевулканизованных, у резин до старения — меньше, чем после термоокислительного старения [41]. Влияние старения на разброс прочности резин из НК, СКС СКВ, СКБМ и неопрена подробно исследовалось Цыдзиком, Виницким и Ивановой [42]. В этой работе также были получены данные, свидетельствующие о том, что разброс прочности связан \с дефектами молекулярной структуры, а не с микродефектами, которые могут иметь место в загрязненных или плохо приготовленных образцах.[3, С.63]

Известно, что повышение прочности искусственных целлюлозных волокон почти всегда сопровождается понижением из разрывных удлинений. Однако сущность этого факта не была еще настолько ясна, чтобы предвидеть и объяснить возможные соотношения изменений между прочностью и разрывными удлинениями для волокон, упрочненных по различным механическим схемам при прочих равных условиях. Между тем упрочнение целлюлозного волокна разными методами при постоянстве всех других условий приводит при равных разрывных прочностях к разрывным удлинениям готовых волокон, отличающимся друг от друга в 2—3 раза, причем, что особенно интересно, такое резкое падение удлинений возможно даже при сравнительно более низких прочиостях. Как это было показано в экспериментальных работах, обобщенных Каргиным и Слонимским [4] в единую теорию переходных состояний линейных полимеров, имеющих Тс и Т? ниже температуры химического распада, переход из вязкотекучего состояния в стеклообразное совершается через высокоэластическую область с исчезновением большого набора периодов релаксации и может осуществляться как за счет межмолекулярного, так и за счет внутримолекулярного взаимодействия звеньев цепи. Естественно предположить, что стеклование полимерных волокон связано с теми же причинами и что увеличение жесткости линейных молекул целлюлозы может совершаться под действием механического напряжения, приложенного извне.[6, С.270]

Бопп и Зисман [25, 26] нашли, что при облучении образцов вулканизованного серой натурального каучука происходит увеличение модуля упругости, жесткости и твердости и понижение 'прочности, разрывного удлинения и остаточных удлинений при растяжении и сжатии. При дозе выше 10 единиц реакторного излучения все свойства заметно ухудшаются в результате чрезмерной сшивки. Количество выделяющегося газа составляет только около 0,1 количества газа, выделяющегося при облучении полиэтилена. Проводилось сравнительное изучение стойкости образцов вулканизатов синтетических каучуков различных типов при действии излучения атомного реактора в присутствии воздуха [26]. О стойкости судили по изменению разрывных удлинений с. дозой. Натуральный каучук о-казался примерно в 5 раз более устойчивым, чем неопрен, хайкар OR-15 (сополимер бутадиена и акрилонитрила; см. стр. 181), GR-S (стр. 181), хайкар РА (полиакрилат; стр. 151), тиокол ST (стр. 191) и силастик 7-170 (силиконовый каучук; стр. 193). С другой стороны, Хэм-лин [27] считает, что в ряду каучукоподобных диеновых полимеров и сополимеров, облученных в ядерном реакторе, натуральный каучук отвердевает, причем прочность его снижается быстрее всех остальных. В этих опытах применялись очень большие дозы; наименьшая составляла около 125 мегафэр.[5, С.178]

Степень вытяжки не определяет однозначно значение прочности и разрывного удлинения полимера. Одной и той же степени вытяжки могут соответствовать различные значения прочности, и, наоборот, одна и та же прочность может быть получена при различных степенях вытяжки. Средняя степень ориентации, определяемая двойным лучепреломлением, является более точной характеристикой ориентированного полимера. С другой стороны, прочность и разрывное удлинение не определяются одним двулучепреломлением. Образцы с одинаковым двулучепреломлением, ориентированные в различных условиях, могут разорваться на разных стадиях растяжения, хотя до момента разрыва одного из образцов диаграммы растяжения их полностью совпадают. Таким образом, по степени ориентации невозможно однозначно определить прочностные характеристики ориентированных полимеров. Однозначную связь прочности и разрывных удлинений со строением ориентированного полимера удается установить лишь в том случае, если можно учесть два параметра — среднюю степень ориентации звеньев макромолекул и число цепей молекулярной сетки в единичном объеме, так как[1, С.327]

Анализ соотношений прочности и разрывных удлинений ненаполненных вулканизатов СКС различного состава и строения ^неизменно обнаруживает прямое соответствие этих свойств, что указывает на существенное влияние ориентации цепей на прочность [25,68].[3, С.68]

Ниже приведены значения предела вынужденной эластичности (сгв.э) и разрывных удлинений (А///0) поликарбоната с различным[2, С.161]

В таблице приведены характерные результаты испытаний разрывной прочности и разрывных удлинений, определения числа двойных изгибов и усадки волокна при прогреве в водной среде. Эти определения производили как на образцах готового волокна при кондиционной влажности, так и на тех же образцах после их прогрева в водной среде при 90—95° в течение 30 мин. и сушки в свободном состоянии при тех же условиях.[6, С.275]

Райан [35] установил, что при длительном действии -у-излу-чения происходит затвердевание натурального каучука и уменьшение его разрывных удлинений.[5, С.179]

Пленки, полученные из растворов гуттаперчи в бензоле при различных длительностях испарения (рис. 3, а и б и 7, д и е), обладают низкими значениями прочности и разрывных удлинений и форма кривых растяжения не соответствует обычным формам графиков, получающихся при растяжении пленок хорошо закристаллизованных полимеров.[6, С.402]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Барштейн Р.С. Пластификаторы для полимеров, 1982, 197 с.
3. Кармин Б.К. Химия и технология высокомолекулярных соединений Том 6, 1975, 172 с.
4. Голда Р.Ф. Многокомпонентные полимерные системы, 1974, 328 с.
5. Бовей Ф.N. Действующие ионизирующих излучений на природные и синтетические полимеры, 1959, 296 с.
6. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
7. Марихин В.А. Надмолекулярная структура полимеров, 1977, 240 с.

На главную