На главную

Статья по теме: Соединений значительно

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Работоспособность соединений значительно повышается в ус ловиях «чистого» сдвига. В этом случае исчезает максимум н, кривых прочность — температура, в меньшей степени проявляет ся масштабный и другие эффекты. Это достигается при испытании соединений на сдвиг при кручении. Доказательством наличия однородного поля напряжений является отсутствие различил в физико-механических свойствах свободной пленки и полимер-*? в соединении при когезионном разрушении: значение прочности и модуля сдвига образцов полимера и клеевых соединений примерно одинаковы.[7, С.146]

Термический распад органических соединений значительно ускоряется при окислении, которому вещества подвергаются особенно легко при высоких температурах. В этом отношении благоприятными являются некоторые структурные особенности полисилоксанов. Мы знаем, что термический распад органических полимеров в присутствии кислорода воздуха выражается в разрыве связи С — С, в результате чего образуются газообразные продукты и углеродистые полимеры. Продукты окисления улетучиваются и таким образом открывают доступ кислороду к не подвергшимся еще окислению частям молекулы, и деструкция протекает со все возрастающей скоростью. В тех же условиях и у органополисил-оксанов наступает такой же разрыв связи Si — С и от силоксановой цепи отщепляются органические группы. Однако сама силоксановая связь не разрушается и отщепление боковых групп или цепей сопровождается образованием кислородных мостиков, ограничивающих доступ кислорода к остальным органическим группам, и тем самым дальнейшее окисление полимера в значительной степени замедляется.[11, С.191]

При действии воды или ее паров прочность клеевых соединений значительно снижается; при эксплуатации клеевых изделий, работающих в условиях влажного и тропического климата, торцы клеевых соединений рекомендуется защищать лакокрасочными покрытиями.[8, С.312]

Высокомолекулярные соединения линейной и разветвленной структуры отличаются от низкомолекулярных органических соединений значительно большими силами взаимодействия между молекулами. С увеличением молекулярного веса и полярности полимера силы межмолекулярного взаимодействия возрастают. Размеры отдельных макромолекул полимеров приближаются к размерам коллоидных частиц (10~j|—10~6 см).[1, С.61]

Эффективность действия перечисленных инициаторов существенно различается, поскольку поляризуемость ненасыщенных соединений значительно зависит от типа заместителя и природы используемого растворителя.[6, С.142]

Влияние толщины клеевого слоя на прочность зависит также от характера нагружения и распределения напряжения в соединениях. При чистом сдвиге (сдвиг при кручении) прочность соединений значительно меньше зависит от толщины пленки, чем при других видах напряженного состояния. Так, при увеличении толщины на 1,5—2 порядка прочность соединений при кручении снижается на 15%, а при равномерном отрыве и сдвиге— на 45 и 65°/о соответственно. В общем случае проявление «масштабных» и других эффектов зависит от возможности перераспределения напряжений при нагружении, т. е. от скорости протекания релаксационных процессов в отвержденном клее. Скорость релаксации напряжений определяется химическим составом и топологической структурой сетки, а также физическим состоянием пленки. В стеклообразном состоянии эти факторы оказывают большее влияние на прочность соединений, чем в области Тс и выше.[7, С.115]

Результатом взаимодействия макромолекул в таких растворах является образование лабильных ассоциатов, состав которых непрерывно изменяется. Средний период жизни ассоцнатов высокомолекулярных соединений значительно бо 1ьше, чем период жизни ассоцнатов ннзкомолекулярных жидкостей, так как отрыв и присоединение сегментов макромолекул происходят гораздо медленнее, чем в случае молекул низкомотекулярных веществ. Размерь; ассоциатор и продолжитечыюсть их жизни зависят от температуры, концентрации раствора, строения полимера и растворителя При повышении температуры уветичива-ется сегментальная подвижность макромолекул, что способствует распаду ассоциатов; повышение концентрации, снижение температуры раствора приводят к увеличению ра меров и 1 ро-должительности существования ассоциатов.[5, С.411]

Развитие методов анализа кремнийорганических соединений значительно отстало от общего развития химии кремнийорганических соединений.[11, С.210]

Прочие соединения. Эффективность дисульфидов для инициирования невелика, что связано с малой скоростью их термич. распада и сравнительно низкой активностью образующихся радикалов. Активность этих соединений значительно возрастает при облучении системы ультрафиолетовым светом. Полимеризацию стирола вызывают, напр., дибензоилдисуль-флд, 2,2'-бензтиазилдисульфид и тетраметилтиурам-дисульфид. Однако скорость полимеризации в их присутствии составляет лишь 0,1—0,2 ее значения для случая инициирования перекисью бензоила при той же концентрации. Три- и тетрасульфиды, например (С6Н5СН2)284, не активны пи при термич., ни при фотополимеризации.[10, С.425]

Прочие соединения. Эффективность дисульфидов для инициирования невелика, что связано с малой скоростью их термич. распада и сравнительно низкой активностью образующихся радикалов. Активность этих соединений значительно возрастает при облучении системы ультрафиолетовым светом. Полимеризацию стирола вызывают, напр., дибензоилдисуль-фид, 2,2'-бензтиазилдисульфид и тетраметилтиурам-дисулъфид. Однако скорость полимеризации в их присутствии составляет лишь 0,1 — 0,2 ее значения для случая инициирования перекисью бензоила при той же концентрации. Три- и тетрасульфиды, например (CeH5CH2)2S4, не активны ни при термич., ни при фото-пол име ризации .[12, С.422]

Введены разделы, посвященные новым методам синтеза, — полирекомбинация и диеновый синтез высокомолекулярных соединений. Значительно шире изложена ионная полимеризация и полимеризация в твердой фазе.[3, С.9]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Лосев И.П. Химия синтетических полимеров, 1960, 577 с.
2. Кирпичников П.А. Химия и технология мономеров для синтетических каучуков, 1981, 264 с.
3. Стрепихеев А.А. Основы химии высокомолекулярных соединений, 1976, 440 с.
4. Горбунов Б.Н. Химия и технология стабилизаторов полимерных материалов, 1981, 368 с.
5. Тугов И.И. Химия и физика полимеров, 1989, 433 с.
6. Браун Д.N. Практическое руководство по синтезу и исследованию свойств полимеров, 1976, 257 с.
7. Чернин И.З. Эпоксидные полимеры и композиции, 1982, 231 с.
8. Катаев В.М. Справочник по пластическим массам Том 1 Изд.2, 1975, 448 с.
9. Берлин А.А. Основы адгезии полимеров, 1974, 408 с.
10. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
11. Бажант В.N. Силивоны, 1950, 710 с.
12. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.

На главную