На главную

Статья по теме: Сверхтонкой структуры

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Мессбауэровская спектроскопия. Специфическая дефектная структура должна влиять на параметры электрической и магнитной сверхтонкой структуры наноматериалов, полученных ИПД. В связи с этим большой интерес представляют результаты мессбауэрографических исследований, позволивших получить информацию не только о границах зерен, но и о приграничной области. В работах [152, 153] мессбауэровская спектроскопия была проведена на УМЗ Fe (чистотой 99,97%). Fe имеет сверхтонкую магнитную структуру, которая легко разрешима, что делает его удобным объектом для мессбауэровских экспериментов. Измерения были выполнены в просвечивающем режиме при комнатной температуре с использованием источника Со в Сг матрице.[4, С.84]

Несколько иная двухфазная система с сильными связями на границах фаз получена на основе трехблочных сополимеров типа бутадиен-стирольного сополимера. Как показано в гл. 2, молекула такого сополимера состоит из твердых концевых блоков (стирол), соединенных центральными эластомерными блоками (бутадиен). Блоки стирола накапливаются и образуют небольшие домены, которые выполняют роль сшивок, вызывая резине/подобную эластичность блочного сополимера при температурах окружающей среды и обусловливают пластическую деформацию при высоких температурах. Для выяснения механизма разрушения таких систем было бы полезно определить, в какой из фаз чаще всего происходит разрыв молекулярной цепи. Прямые пути решения данной задачи заключались бы в разрушении материала и анализе сверхтонкой структуры образующихся в результате спектров ЭПР. Однако в интервале температур от температуры жидкого азота до комнатной температуры деформирование растяжением не вызывает накопления свободных радикалов в количестве, достаточном для их обнаружения. Вследствие этого Деври, Ройланс и Уильяме [36] использовали менее убедительный, но более доступный метод сравнения спектра бутадиен-стирольных блочных сополимеров (SBS) с отдельными спектрами стирола и бутадиена. Эти исследования были выполнены при температуре жидкого азота путем измельчения материала с целью увеличения поверхности разрушения. При низкой температуре радикалы становились более стабильными и, по-видимому, «замораживались» на стадии первичных радикалов. Сравнение спектров трех материалов показало, что спектр SBS содержал все линии радикала бутадиена, но не содержал линий радикала стирола. Поэтому радикал системы SBS был отнесен к фазе бутадиена. К сожалению, в данных исследованиях не удалось выяснить, был ли радикал, полученный при измельчении в условиях низких температур, тем же самым, что и образовавшийся в нормальных условиях при комнатной температуре, и являлся ли обнаруженный радикал первичным или вторичным.[1, С.219]

Рис. 6.1. Зависимость сверхтонкой структуры свободных (алкильных) радикалов основной цепи от ориентации [37, 38].[1, С.159]

Спектры УМЗ Fe (рис. 2.15) представляли собой суперпозицию существенно различающихся параметрами электрической и магнитной сверхтонкой структуры (табл. 2.1 [153]) подспектров (1 и 2)[4, С.84]

Наличие второго подспектра, очевидно, связано с особым состоянием части атомов Fe вблизи границ зерен. Из табл. 2.1 следует, что доля таких атомов составляет 11 ± 1%. Отсюда оценка толщины слоя приграничных атомов (физическая ширина границ зерен) дает 8,4 ± 1,5нм. Установление наличия четко фиксированных параметров сверхтонкой структуры для рассматриваемой части атомов позволяет говорить о существовании четко выделенного «зернограничного» состояния атомов Fe или зернограничной фазы наряду с зеренной фазой. Вместе с тем не было обнаружено различий в кристаллической структуре этих фаз.[4, С.85]

За сигнал электронного резонанса в исследуемом веществе ответственны парамагнитные частицы. Это уже само по себе является ценной информацией, тем более, что экспериментальные методы позволяют обнаружить и измерять весьма малое количество парамагнитных частиц (до 10~12). Исследование формы и структуры резонансной линии (особенно сверхтонкой структуры, вызванной взаимодействием магнитного момента неспаренного электрона с магнитными моментами ядер), а также измерение величины g-фактора позволяет детально изучать свойства и строение самих парамагнитных частиц.[2, С.276]

Наличие сигнала электронного резонанса в исследуемом веществе указывает на присутствие в нем парамагнитных частиц. Это уже само по себе является ценной информацией, тем более, что экспериментальные методы позволяют обнаруживать и измерять весьма малые количества парамагнитных частиц (до 10й). Исследование формы и структуры резонансной линии (особенно сверхтонкой структуры, вызванной взаимодействием магнитного момента неспаренного электрона с магнитными моментами ядер), а также измерение ^-фактора позволяют детально изучать свойства и строение самих парамагнитных частиц.[3, С.228]

Распределение радикалов. Прежде всего возникает вопрос о возможности однородного диспергирования радикалов в исследуемом веществе. Критерием более или менее однородного распределения в низкомолекулярной или полимерной среде нитроксильных радикалов, используемых в качестве зондов, может, по-видимому, служить наличие расщепления в спектре ЭПР, связанного с СТВ. При высоких локальных концентрациях радикалов сильные диполь-дипольные и обменные взаимодействия неспаренных электронов приводят к исчезновению сверхтонкой структуры спектра. Показано [203; 204, с. 236], что вращательная и поступательная подвижность парамагнитного зонда в полимерной среде тесно связана с движением макромолекул. Изменение величины расщепления, ширины и интенсивности линий спектра происходят обычно вблизи температуры стеклования (как правило, выше 7"ст.) Зависимость тс от \/Т при этой же температуре претерпевает перегиб. При температурах выше точки перегиба энергия активации Е возрастает. Для больших по объему молекул зонда температура начала изменения спектральных характеристик близка к Т„. Вращение малых молекул зонда в аморфных полимерах практически изотропно, поэтому для определения тс используют соотношение (XI. 7). В области температур выше и ниже точки перегиба зависимость гс от \/Т описывается законом Аррениуса тс = т0ехр (EJRT). На связь подвижности зонда с сегментальной подвижностью макромолекул указывают аномально большие значения предэкспоненты и возрастание энергии активации при температурах выше Гст. В табл. XI. 1 приведены релаксационные параметры то и Е для некоторых аморфных полимеров в области температур выше и ниже точки перегиба Ти.[6, С.287]

Параметры сверхтонкой структуры подепектров 1 и 2 для образцов Fe с различным средним размером зерен[4, С.85]

Основные характеристики спектров ЭПР — число линий сверхтонкой структуры, расстояния между ними (т. наз. константы СТВ), относительные интенсивности линий и их ширины б//. Напр., спектр ЭПР атома водорода состоит из двух линий равной интенсивности, расположенных одна от другой на расстоянии 512 э (рис. 1, а); одна из них соответствует резонансному по-[10, С.477]

Основные характеристики спектров ЭПР — число линий сверхтонкой структуры, расстояния между ними (т. наз. константы СТВ), относительные интенсивности линий и их ширины 6Н. Напр., спектр ЭПР атома водорода состоит из двух линий равной интенсивности, расположенных одна от другой на расстоянии 512 э (рис. 1, а); одна из них соответствует резонансному по-[12, С.476]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Кауш Г.N. Разрушение полимеров, 1981, 440 с.
2. Бартенев Г.М. Курс физики полимеров, 1976, 288 с.
3. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
4. Валиев Р.З. Наноструктурные материалы, полученные интенсивной пластической деформацией, 2000, 272 с.
5. Аверко-Антонович И.Ю. Методы исследования структуры и свойств полимеров, 2002, 605 с.
6. Бартенев Г.М. Физика полимеров, 1990, 433 с.
7. Рабек Я.N. Экспериментальные методы в химии полимеров Ч.1, 1983, 385 с.
8. Клаин Г.N. Аналитическая химия полимеров том 2, 1965, 472 с.
9. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
10. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
11. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
12. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
13. Коршак В.В. Химия и технология синтетических высокомолекулярных соединений Том 9, 1967, 946 с.
14. Почепцов В.С. Химия и технология поликонденсационных полимеров, 1977, 140 с.

На главную