На главную

Статья по теме: Текучесть полимеров

Предметная область: полимеры, синтетические волокна, каучук, резина

Скачать полный текст

Текучесть полимеров характеризуется следующими отличительными свойствами: 1) высокой вязкостью в связи с большой молекулярной массой полимеров; 2) особой ролью напряжения, обеспечивающего снижение вязкости в процессах переработки; 3) независимостью температурного коэффициента вязкости от многих факторов, в том числе от молекулярной массы и напряжения и 4) особой ролью высокоэластической деформации, развивающейся в вязком потоке полимера.[5, С.117]

Величина сегмента зависит от химического строения макромолекулы, чем более жесткой является макромолекула, тем большей величиной сегме* та она обладает. Наименьшей величиной сегмента обладают гибкие макрс молекулы, для которых вращение отдельных звеньев относительно друг др> га является достаточно свободным. В табл.15 приведены молекулярные мае сы сегментов макромолекул различных полимеров. Из этой таблицы хорош видно, что в зависимости от химического строения полимера его макромоле кула обладают совершенно различными размерами сегментов. Наиболее кс роткий сегмент характерен для макромолекул полиизобутилена, а наиболе длинный сегмент - для макромолекул полиарилата* . Наиболее жесткоцег ные полимеры обладают чрезвычайно большой величиной механическог сегмента, и во многих случаях величина этого сегмента равна всей длине мак ромолекулы. Иными словами, в таких макромолекулах нельзя переместит их отдельные участки, не затрагивая макромолекулу в целом. Поскольку пр: нагревании такого полимера его макромолекулы перемещаются относитель но друг друга целиком, то температуры текучести и стеклования для него со впадают, ибо по своему определению текучесть полимеров - это смещени отдельных макромолекул относительно друг друга.[3, С.94]

Ньютоновское и аномально вязкое течения ф Механизмы ньютоновского течения ф Влияние больших и малых напряжений на текучесть полимеров ф Правило логарифмической аддитивности[1, С.4]

Ньютоновское и аномально вязкое течения ф Механизмы ньютоновского течения ф Влияние больших и малых напряжений на текучесть полимеров ф Правило логарифмической аддитивности[1, С.146]

Влияние строения молекул на реологические свойства полимеров подробнее будет рассмотрено ниже. Здесь укажем только, что любое повышение энергетического барьера, например ограничение вращения звеньев цепи или какое-либо другое уменьшение внутренней гибкости цепи, оказывает влияние на текучесть полимеров. Сильное влияние на текучесть полимеров оказывает, например, наличие в молекулах двойных связей, ароматических групп и длинных боковых ответвлений. Полярность молекул или их поляризуемость оказывает влияние не только на величины напряжений или скорости сдвига, но также и на температурную зависимость вязкости.[6, С.44]

Наличие двух типов структурных элементов приводит к тому, что свойства полимеров распадаются на две группы. В одну из этих групп входят свойства, зависящие от расположения малых участков цепей, а в другую — свойства, зависящие от цепных молекул в целом. В качестве примера первых можно привести высокоэластические свойства, а примером вторых является текучесть полимеров. Следует заметить, что существуют свойства, которые не могут зависеть только от одного типа структурных элементов. Поэтому у полимеров наблюдается «расщепление» некоторых свойств. Так, например, у низкомолекулярных гомологов температура стеклования разделяет их жидкое и твердое агрегатные состояния: чем выше молекулярный вес гомолога, тем выше температура стеклования. У полимеров происходит «расщепление» температуры стеклования на две, одна из которых также называется температурой стеклования, а другая — температурой текучести. Это «расщепление» связано с возникновением у полимеров высокоэластического состояния, существующего в интервале температур между областями стеклообразного и вязкотекучего состояний. При этом оказывается, что температура стеклования полимеров одна и та же для всего полимергомологиче-ского ряда, а температура текучести повышается с ростом: степени полимеризации. Первая связана с подвижностью малых участков цепных молекул, не зависящей от длины молекул, а вторая — с подвижностью цепей в целом, и поэтому зависит от их размера.[7, С.88]

Свойства. В последние годы произошли значительные изменения в воззрениях на механизм образования и структуру лолиорганосилоксанов. Складывающиеся в настоящее время представления о структуре полиорганосилоксанов сводятся к тому, что цепи полимеров состоят из больших колец, соединенных друг с другом в сложные образования. Такая структура вызывает внутреннюю пластификацию и обусловливает высокую лластичность и текучесть полимеров с мол. в. 100000 [111]. Мер-кер [112] изучал ассоциацию молекул полидиметилсилоксанов в блочном состоянии и нашел, что вязкость полимера (п) в санти-пуазах при 25° и истинный (Mt) молекулярный вес связаны между собой уравнением[14, С.381]

ТЕКУЧЕСТЬ полимеров — см. Вязкость, Вязкотекучее состояние, Текучести температура.[9, С.295]

Текучесть полимеров 20, 21, 574[10, С.610]

Текучесть полимеров 20, 21, 574[11, С.607]

ТЕКУЧЕСТЬ полимеров — см. Вязкость, Вязкотекучее состояние, Текучести температура.[13, С.295]

... отрезано, скачайте архив с полным текстом ! Полный текст статьи здесь



ТЕОРЕТИЧЕСКАЯ МЕХАНИКА СТУДЕНТАМ!!!
Задачи по теоретической механике из сборника курсовых работ под редакцией А.А. Яблонского, Кепе, Диевского. Быстро, качественно, все виды оплат, СМС-оплата.
А также: Готовые решения задач по теормеху из методичек Тарга С.М. 1988 и 1989 г. и задачника Мещерского. Решение любых задач по термеху на заказ.
Если Вам нужны решения задач по Физике из методички Чертова А.Г. для заочников, а также решебнки: Прокофьева, Чертова, Воробьёва и Волькинштейна. Решение любых задач по физике и гидравлике на сайте fiziks.ru
Что самое приятное на любом из этих сайтов Вы можете заказать решение задач по другим предметам: химия, высшая математика, строймех, сопромат, электротехника, материаловедение, ТКМ и другие.

СПИСОК ЛИТЕРАТУРЫ

1. Бартенев Г.М. Физика и механика полимеров, 1983, 392 с.
2. Тагер А.А. Физикохимия полимеров, 1968, 545 с.
3. Аскадский А.А. Компьютерное материаловедение полимеров Т.1 Атомно-молекулярный уровень, 1999, 544 с.
4. Тагер А.А. Физикохимия полимеров Издание второе, 1966, 546 с.
5. Бартенев Г.М. Прочность и разрушение высокоэластических материалов, 1964, 388 с.
6. Северс Э.Т. Реология полимеров, 1966, 199 с.
7. Каргин В.А. Избранные труды структура и механические свойства полимеров, 1979, 452 с.
8. Кабанов В.А. Энциклопедия полимеров Том 2, 1974, 516 с.
9. Кабанов В.А. Энциклопедия полимеров Том 3, 1977, 576 с.
10. Каргин В.А. Энциклопедия полимеров том 1, 1972, 612 с.
11. Каргин В.А. Энциклопедия полимеров Том 1, 1974, 609 с.
12. Каргин В.А. Энциклопедия полимеров Том 2, 1974, 514 с.
13. Каргин В.А. Энциклопедия полимеров Том 3, 1977, 575 с.
14. Коршак В.В. Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 7, 1961, 726 с.

На главную